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Relaxation and transport of molecular systems in the gas phase

by R. F. SNIDER

Department of Chemistry, University of British Columbia, Vancouver,

Canada V6T 1Z1

Some of the properties of gas phase relaxation and transport are reviewed with an

emphasis on those properties that are due entirely to the presence of internal states

in real molecular systems. The theoretical formulations of such non-equilibrium
eŒects is based on the quantum Boltzmann equation. The conditions for the

validity and the properties of this equation are reviewed. This includes a general

discussion of how the combination of free molecule motion and collisions is
required for the approach to global equilibrium. It is shown how the free motion

is equivalent to a phase randomization of the elements of the density operator that

are oŒ-diagonal in energy. Spin relaxation and the magnetic ® eld dependence
(Senftleben-Beenakker eŒects) of the viscosity for a gas of diatomics are used to

illustrate these aspects of the approach to equilibrium.

1. Introduction

The description of the time dependence of a dilute gas is based on the Boltzmann

equation [1]. Essentially the molecules of a dilute gas move freely most of the time, but

every once in a while, two molecules meet in a binary collision. Since the molecules are

almost always free, the bulk properties are well described by the average properties of

a typical molecule. The classic work of Boltzmann considered only structureless

(point) particles so this description was accomplished by a distribution function of

position r and momentum p, which varies with time as the gas evolves. It is this time

variation that the Boltzmann equation describes by taking into account the two eŒects

of free motion and binary collisions. Real molecules have internal states that need to

be described by quantum mechanics so that a density operator is needed rather than

a simple distribution function of r and p, with an associated quantum form of the

Boltzmann equation to describe the time variation of the density operator, again

involving free motion and binary collisions. It is this quantum generalization of the

Boltzmann equation and its application to a variety of chemical eŒects in relaxation

and transport that is addressed in this paper. At normal temperatures it is usually

unnecessary to worry about the quantum degeneracy eŒects associated with Fermi±

Dirac and Bose± Einstein statistics, so these are ignored, the discussion being limited

to Boltzmann statistics. This does not of course disallow the need for such symmetry

considerations when determining the (intramolecular) internal states of a molecule, it

only ignores intermolecular symmetry eŒects.

At higher densities, more than two molecules can be interacting so the Boltzmann

equation has to be generalized in order to account for three and more particle

collisions. There also arises the question whether the molecules are ever really `free ’ or

whether their motion between collisions should be modi® ed to account for the

(continuous but weak) interaction with other molecules in the gas. These questions are

not addressed in this paper. The form of the classical dilute gas Boltzmann equation

is well accepted in the literature, though there are diŒerences of opinion about how, or

even whether, it can be derived in a rigorous manner. For its quantum generalization,
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186 R . F. Snider

there has also been some argument about its detailed form. W hile these diŒering points

of view are mentioned in this presentation, the author’ s bias of interpretation will

predominate. In the subsequent presentation of the `derivation ’ of the Boltzmann

equation, the words `derive ’ are always enclosed in quotes, to indicate this lack of

rigour.

The relation between the exact evolution of the density operator (classical

distribution function) as a rigorous consequence of the Schro$ dinger equation

(Newton’ s equations), and the evolution predicted by the Boltzmann equation has a

long history of con¯ icting opinion, in part responsible for Boltzmann’ s suicide. In

particular, the Boltzmann equation describes an approach to equilibrium whereas the

Schro$ dinger equation does not. Some discussion of this reversibility± irreversibility

paradox is given, again with a bias for the author’ s point of view.

The paper begins with a short section on important aspects of notation and a

review of the exact evolution of an N-molecule system with its constancy of the N-

molecule entropy. Section 3 is devoted to the Boltzmann equation, starting with a

subsection covering the concepts and approximations involved in its `derivation ’ .

W hile this involves formal manipulations, expressing the results in a matrix

representation so that quantum calculations can be performed becomes nontrivial.

Subsection 3.2 describes the detailed properties of the quantum Boltzmann collision

term, speci® cally of the transition superoperator. This is fairly technical since it is

necessary to carefully treat the energy diŒerences (frequencies) between the diŒerent

quantum states that enter before and after a collision. In many applications, the

resulting expression simpli® es signi® cantly. Subsection 3.3 describes the simplest case,

where the 1-molecule density operator is diagonal in the energy basis and the gas is in

local thermal equilibrium, to connect to the set of kinetic equations describing the

chemical kinetics of a set of bimolecular reactions. Generalization to include the

analogue of thermal non-equilibrium and ¯ ow and } or diŒusion phenomena (while

retaining the requirements that the density operator be diagonal in energy and that the

collisions are local) is the W ang-Chang± Uhlenbeck equation [2]. Aspects of the

approach to equilibrium are discussed in subsection 3.4, emphasizing two limiting

cases. For the W ang-Chang± Uhlenbeck case, Boltzmann’ s H-theorem shows how the

local entropy increases until local thermodynamic equilibrium is reached, equivalently

that the distribution is Boltzmann. But global equilibrium still requires an interplay

between the motion of the molecules between collisions and the collision processes

themselves. The second limiting case involves the approach to equilibrium of a density

operator that is initially oŒ-diagonal in energy. In this case the H-theorem has not

been shown to be valid. It is shown how phase randomization can make the density

operator diagonal in an energy representation so that the H-theorem becomes valid.

This approach to equilibrium due to a combination of phase randomization and

collisional motion is identical in principle to the combination of free ¯ ow and

collisions responsible for the approach to equilibrium in an inhomogeneous gas.

Subsection 3.4 ends with a short subsection contrasting the 1-molecule and N-

molecule entropies.

To exemplify the utility of the quantum Boltzmann equation, two applications are

reviewed in fair detail. Section 4 describes the relaxation of a spin where an

intramolecular mechanism is dominant. While the spin± lattice and spin± spin relax-

ation times are usually emphasized, the kinetic approach also describes how the

various spins evolve with time in their coupled motion. In this the density operator is

oŒ-diagonal in Zeeman energy so a quantum Boltzmann equation is required for the

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Relaxation and transport of molecular systems in the gas phase 187

formulation of the spin kinetics. Section 5 describes the relation of the Boltzmann

equation to the equations of hydrodynamics and treats the magnetic ® eld dependence

of the viscosity coe� cients with certain simplifying approximations that have been

used for an interpretation of experiment. In both applications it is the partial phase

randomization of the Zeeman energies that are responsible for the detailed

experimental observations of the dependence on the magnetic ® eld. A short discussion

section mentions some of the other applications of the quantum Boltzmann equation.

2. Notation and the exact N-molecule evolution

The whole gas is assumed to consist of N molecules in a volume W . As a

mechanical system, the gas has energy eigenstates determined by its hamiltonian H (N ),

and any wavefunction W of the system will evolve according to the Schro$ dinger

equation

i ò
¦ W

¦ t
= H (N ) W . (1)

But the state of the gas can not be described by a single wavefunction, but rather by

a density operator q (N ) whose evolution is governed by the von Neumann [3], or

quantum Liouville, equation

i ò
¦ q (N )

¦ t
= [H (N ), q (N )]

Õ

3 ò , (N ) q (N ) = H (N ) q (N )– q (N ) H (N ). (2)

The notion of a superoperator as a linear transformation of operators, whose notation

was introduced by Crawford [4], is an important concept for the e� cient description

of macroscopic kinetic phenomena. The ® rst example of this kind of quantity is the

Liouville superoperator , (N ) as the `commutator of H (N ) with ’ . In thermal

equilibrium, the density operator is the time independent Boltzmann distribution

q (N ) =
exp (– H (N ) } k

B
T )

N !Q
N

= 3
j

r j ª
exp (– E

j
} k

B
T )

N !Q
N

© j r , (3)

involving the energy eigenstates r j ª and eigenvalues E
j

of H (N ),

H (N ) r j ª = E
j
r j ª , (4)

and the canonical partition function Q
N

= Tr
"

¼ N
exp (– H (N ) } k

B
T ) } N !.

The expectation value for an N molecule physical observable A (N ) is determined as

the trace Tr
"

¼ N
over the states of the N molecules,

© A ª = Tr
"

¼ N
A (N ) q (N ), (5)

whose time dependence follows from the von Neumman equation,

d

dt
© A ª =

– i

ò
Tr

"
¼ N

A (N ) [H (N ), q (N )]
Õ
. (6)

The identity operator 1(N ) is a particularly important observable, which determines the

normalization of q (N ), in particular

Tr
"

¼ N
1(N ) q (N ) = 1. (7)

A diŒerent kind of quantity of importance for macroscopic behaviour is the entropy

S (N ) =– k
B

Tr
"

¼ N
q (N ) ln (N ! q (N )). (8)
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188 R . F. Snider

It is an important aspect of mechanical motion that this entropy does not change with

time,

dS (N )

dt
=– k

B
Tr

"
¼ N

¦ q (N ) ln (N ! q (N ))

¦ t

=–
k

B

i ò
Tr

"
¼ N

[ln (N ! q (N )) 1 1] [H (N ), q (N )]
Õ

=–
k

B

i ò
Tr

"
¼ N

[H (N ), q (N ) ln (N ! q (N )) 1 q (N )]
Õ
= 0. (9)

For most chemical systems, the hamiltonian is well approximated as a sum of

1-particle (kinetic) and pair± particle (potential) terms,

H (N ) = 3
j

K
j
1 3

j
!

l

V
jl
. (10)

For a structureless molecule, K
"

is just the translational kinetic energy p #
"
} m , but for

real molecules this can include the rotation, vibration and electronic hamiltonians. It

can also include the Zeeman hamiltonian describing how the spins are aŒected by an

external magnetic ® eld. The intermolecular potential V
" #

is in general anisotropic and

responsible for chemical reactions. For the evolution of density operators, each of

these terms in the hamiltonian has a corresponding superoperator, namely

+
j
A 3 ò Õ " [K

j
, A ]

Õ

6
jl

A 3 ò Õ " [V
jl
, A ]

Õ
. (11)

In a dilute gas, the physical observables are only 1-particle observables, typically

A (N ) = R
j
A

j
, and only the 1-molecule reduced density operator

q ( " )
"

3 NTr
#

¼ N
q (N ) (12)

is needed in order to follow the behaviour of A , since

© A ª = 3
j

Tr
"

¼ N
A

j
q (N ) = Tr

"
A

"
q ( " )

"
. (13)

It follows that it is the evolution of the simpler quantity q ( " )
"

, in contrast to q (N ), that is

needed for the description of the time dependence of such physical observables. From

the von Neumann equation, this evolution is determined by

i
¦ q ( " )

"
¦ t

= K ( " )
"

q ( " )
"

1 Tr
#
6

" #
q ( # )

" #
. (14)

Here q ( # )
" #

is the pair density operator, the second in the hierarchy of density operators

q (n )
"

¼ n 3 N (N – 1) ¼ (N – n 1 1) Tr n + "
¼ N

q (N ). (15)

Equation (14) is just the ® rst member of the quantum form of the BBGKY hierarchy,

whose nth member is

i
¦ q (n )

"
¼ n

¦ t
= , (n )

"
¼ n q (n )

"
¼ n 1 Trn + "

6 (n + " )
"

¼ n + "
, q (n + " )

"
¼ n . (16)

This is named after its many discoveries : Bogoliubov [5], Born and Green [6],

Kirkwood [7] and Yvon [8]. These equations depend on reduced density operators of

higher and higher order, so can not be solved by themselves. Thus they are in that
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Relaxation and transport of molecular systems in the gas phase 189

sense, just a formalism, but these equations serve as a structure for making

approximations for ® nding a closed equation for the evolution of q ( " )
"

. Such an

approximation is the Boltzmann equation.

3. Boltzmann equation

3.1. `Derivation ’

In a dilute gas, the molecules move independently most of the time and undergo

binary collisions every once in a while. For this picture to be valid, the intermolecular

potential must be short ranged. This implies that charged particles with their long-

ranged coulomb interaction must be treated in a diŒerent manner, and will not be

treated in this presentation. The motion of a typical molecule is described exactly by

the ® rst BBGKY equation (14). Clearly the independent (free) motion is described by

the +
"

term, so that collisions are associated with the trace term. But to get an

equation that can be solved, it is necessary to approximate the trace term in such a way

that it can be evaluated entirely in terms of the singlet density operator q ( " )
"

. This is the

essence of the Boltzmann equation.

The trace term in equation (14) involves the interaction V
" #

between two particles.

The particles get into such an interaction by coming together from being freely moving

in an independent manner before the interaction (collision) plays a signi® cant role.

Thus, if one takes the pair of particles back in time to when the particles are non-

interacting, the pair density operator should factor into a product of singlets.

Formally this is

lim

t !
Õ

¢
q ( # )

( " # )
(t) ! q ( " )

"
(t) q ( " )

#
(t). (17)

Immediately there are a number of conceptual questions that arise. An obvious ® rst

comment is that the factorization has been done in the past rather than the future. This

bias re¯ ects our perception of nature, namely the world evolves from the past to the

future, so this choice of past times amounts to inserting an `arrow of time ’ into the

evolution of the mechanical system. There has been a great deal of discussion of this

point, a classic being the Ehrenfests’ article [9] in 1912. Translations of this with their

respective commentary are by T. Ehrenfest [10] and in Appendix 1 of ter Haar’ s book

[11]. An explicit elaboration of taking the opposite time limit has been given by Cohen

and Berlin [12].

A more subtle aspect is the exact scale of time for the limit. As motivated by the

discussion, the factorization is to occur before the collision begins. Thus the time-scale

is at most of the order of nanoseconds for a typical gas under standard conditions of

room temperature and atmospheric pressure, namely a time large compared to the

typical time of duration of a collision s
c

and short to a typical mean free time between

collisions, s
f
. This means that from the time of interaction, the factorization time is to

be only of the order of nanoseconds in the past. There seems to be disagreement in the

literature on this point, and often an exact mathematical limit (that is, to a real time

limit of – ¢ rather than to a limit of E – s
f
) seems to have been interpreted. But for

obtaining a closed equation for q ( " )(t), it is necessary to relate the pair density operator

q ( # ) (t) at time t to the singlet at the same time. This has been accomplished by

contrasting the (binary) collision motion with non-interacting motion, thus, for a time

t in the midst of a collision.

q ( # ) (t) = exp [– i , ( # )
" #

(t– t
!
)] q ( # ) (t

!
) = exp [ – i , ( # )

" #
(t– t

!
)] q ( " )

"
(t

!
) q ( " )

#
(t

!
)

= exp [– i , ( # )
" #

(t– t
!
)] exp [– i( + ( " )

"
1 + ( " )

#
)(t

!
– t)] q ( " )

"
(t) q ( " )

#
(t),

5

6
7

8

(18)
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190 R . F. Snider

with now the limit t– t
!

( s
c

taken so that it is in ® nite on the collision time scale. The

limit of the combination of evolution superoperators is the M ù ller superoperator,

X , 3 lim

t ! ¢
exp (– i , ( # )

" #
t) exp (i + ( # )

" #
t), (19)

whose mathematically rigorous de® nition has been given by Jauch et al. [13]. Inserting

this result into the ® rst BBGKY equation (14) gives the quantum Boltzmann equation

i
¦ q ( " )

"
(t)

¦ t
= + ( " )

"
q ( " )

"
(t) 1 Tr

#
6

" #
X ,

" #
q ( " )

"
(t) q ( " )

#
(t). (20)

Again several comments need to be made. (i) The above assumes only binary

collisions, namely that the possible interaction with other molecules besides the

colliding pair can be ignored during a collision. That is the reason for being able to use

the pair evolution superoperator exp [– i , ( # )(t– t
!
)]. (ii) The contrasting evolutions of

pair collision versus free motion essentially acts to correct the free motion of a pair into

collisional motion. There is also the contrast between the ® nite time for the

factorization before a collision occurs and the in ® nite time diŒerence required for the

formal existence of the M ù ller superoperator. (iii) This combination of approxi-

mations is generally known as Boltzmann’ s `Stosszahlansatz ’ . (iv) There is no rigour

in the above `derivation ’ . The arguments presented above are the same as I used [14]

in 1960 and I consider that they follow the same philosophy of approach as Boltzmann

[1] used in his derivation of the classical Boltzmann equation. Waldmann [15, 16]

obtained a related result by looking at the changes occurring to a physical observable

due to collisions. Yvon [17] related the pair density operator to a product of the

singlets, but did not pursue the result to get a Boltzmann equation. There have been

a number of `re-derivations ’ of this equation and some arguments about its form and

validity. (v) Before the work of W aldmann and myself, the only quantum form for the

Boltzmann equation for handling internal states was the Wang-Chang± Uhlenbeck

equation [2], which consists of a set of coupled equations, one for each molecular

energy state. W hat that missed and equation (20) contains, is the allowance of

superpositions of molecular energy states, which requires the full density operator for

its treatment, rather than just having a set of probabilities. The essential diŒerence

between the work of Waldmann and myself, besides the detailed method of derivation,

was as to how far one takes these superpositions into account. In both of these

`derivations ’ , the aim was only to include degenerate states, whereas it was only later

[18] that the full role of superposition was realized and put into perspective. It is not

clear as to how much agreement there is in the literature on the validity of this latter

perspective. Some of the interpretations discussed later depend on this general

perspective of the role of superpositions.

An alternative `deviation ’ of the Boltzmann equation has been presented by

Boercker and Dufty [19]. This involves a factorization assumption at the three particle

level rather than at the two particle level discussed above. Their factorization depends

on the form of the interaction term of the second BBGKY equation. Speci® cally, the

trace over the third particle is approximated as

Tr
$
[ 6

" $
1 6

# $
] q ( $ )

" # $
E Tr

$ 9 6 " $
q ( # )

" $
q ( " )

#
1 6

# $
q ( # )

# $
q ( " )

" : . (21)

The rationale for this factorization is presumably that, if molecules 1 and 3 are

interacting, via 6
" $

, then the states of these two particles are dependent upon one
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Relaxation and transport of molecular systems in the gas phase 191

another while, if only binary collisions are to occur, particle 2 must be independent of

the colliding pair. A similar argument applies to the term involving 6
# $

. The trace over

particle 3 now involves exactly the combination of terms that appears in the right hand

side of the ® rst BBGKY equation (14). Thus the trace over particle 3 can be eliminated

on the right hand side of equation (21) to give

Tr
$
[ 6

" $
1 6

# $
] q ( $ )

" # $
(t) E 9 i ¦ q ( " )

"
(t)

¦ t
– + ( " )

"
q ( " )

"
(t) : q ( " )

#
(t) 1 9 i ¦ q ( " )

#
(t)

¦ t
– + ( " )

#
q ( " )

#
(t) : q ( " )

"
(t)

= i
¦ q ( " )

"
(t) q ( " )

#
(t)

¦ t
– + ( # )

" #
q ( " )

"
(t) q ( " )

#
(t)

= i exp (– i + ( # )
" #

t)
¦
¦ t

[exp (i+ ( # )
" #

t) q ( " )
"

(t) q ( " )
#

(t)] (22)

an expression involving only the singlet density operator and thus allowing a closure

of the BBGKY hierarchy. A formal time integral of the second BBGKY equation (16),

with the above binary collision approximation for its trace term and some

simpli ® cation, including an integration by parts,

q ( # )
" #

(t) = exp (– i , ( # )
" #

s) q ( # )
" #

(t– s)– iTr
$ &

t

t Õ s

dt´ exp (– i , ( # )
" #

(t– t´)) [ 6
" $

1 6
# $

] q ( $ )
" # $

(t´)

E exp (– i , ( # )
" #

s) q ( # )
" #

(t– s) 1 & t

t Õ s

dt´ exp (– i , ( # )
" #

(t– t´))

3 exp (– i + ( # )
" #

t´)
¦

¦ t´
[exp (i + ( # )

" #
t´) q ( " )

"
(t) e ( " )

#
(t´)]

= q ( " )
"

(t) q ( " )
#

(t) 1 exp (– i , ( # )
" #

s) [ q ( # )
" #

(t– s)– q ( " )
"

(t– s) q ( " )
#

(t– s)]

– &
t

t Õ s

dt´
¦

¦ t´
[exp (– , ( # )

" #
(t– t´)) exp (– i + ( # )

" #
(t´– t))]

3 exp (i + ( # )
" #

(t´– t)) q ( " )
"

(t´) q ( " )
#

(t´), (23)

relates the pair density operator at time t to the singlet density operator at earlier times

t´. Insertion of this result into the ® rst BBGKY equation (14) and making three further

approximations gives the Boltzmann equation. This starts with the result of insertion

i
¦ q ( " )

"
(t)

¦ t
= + ( " )

"
q ( " )

"
(t) 1 Tr

#
6

" #
exp (– i , ( # )

" #
s) [ q ( # )

" #
(t– s)– q ( " )

"
(t– s) q ( " )

#
(t– s)]

1 Tr
#
6

" #
q ( " )

"
(t) q ( " )

#
(t)

– Tr
#
6

" # &
t

t Õ s

¦
¦ t´

[exp (– i , ( # )
" #

(t– t´)) exp (– i + ( # )
" #

(t´– t))]

3 exp (i + ( # )
" #

(t´– t)) q ( " )
"

(t´) q ( " )
#

(t´). (24)

The ® rst approximation involves eliminating the ® rst trace term : since the particles are

interacting, via 6
" #

at time t, then at time t– s, the particles are independent, so that

q ( # )
" #

should factor at this time and the diŒerent term vanish. Secondly, over most of the

integration range, t´ corresponds to a time before the collision between particles 1 and

2 has begun. This allows the `time-shift ’ approximation

exp (i + ( # )
" #

(t´– t)) q ( " )
"

(t´) q ( " )
#

(t´) E q ( " )
"

(t) q ( " )
#

(t) (25)
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192 R . F. Snider

to be made. Essentially this assumes that the two particles are evolving freely at this

pre-collision time. As a result, the integration over t´ can be explicitly carried out, with

the result

i
¦ q ( " )

"
(t)

¦ t
= + ( " )

"
q ( " )

"
(t) 1 Tr

#
6

" #
exp (– i , ( # )

" #
s) exp (i + ( # )

" #
s) q ( " )

"
(t) q ( " )

#
(t). (26)

The last approximation is to recognize that for s ! ¢ , the combination of evolution

operators is the M ù ller superoperator X ,
" #

, see equation (19), and thus this equation

becomes the Boltzmann equation (20). This approach by Boercker and Dufty thus

gives an alternate motivation for what goes into the rationale of the Boltzmann

equation. It also leads to a diŒerent form for the pair density operator, whose explicit

form has been investigated [20]. Klimontovich [21] also `derived ’ the Boltzmann

equation by a method which is almost identical to that of Boercker and Dufty [19],

phrasing the approximations in terms of (classical) correlation functions rather than

reduced distribution functions. A fairly detailed analysis and comparison of these

forms for the binary collision approximation closures of the BBGKY hierarchy has

recently been given [22].

As stated above, there has been many attempts to rigorously derive the Boltzmann

equation. To the author’ s knowledge, the most recent of these is by Lanford [23]. After

considerable eŒort, he is able to justify that the Boltzmann equation is valid for times

up to a fraction of the mean free time. Clearly this is insu� cient to justify the standard

usage made of the Boltzmann equation, namely to describe how a gas evolves over a

macroscopic time-scale. This inability to mathematically assess the relationship

between the evolution predicted by the Boltzmann equation and the exact evolution

predicted by the von Neumann equation makes it di� cult to know how to generalize

the Boltzmann equation to more general situations such as the behaviour at higher

density.

There have been many eŒorts to generalize the Boltzmann equation to higher order

in density, in particular to include three and more particle collisions. Bogoliubov’ s

approach [5] has been followed by many workers, in particular by Choh and

Uhlenbeck [24] and Cohen [25]. Green [26], Klimontovich [21] and the author [27] each

has pursued his own method. Some comparison of these works have been made [22,

28]. These generalizations are not discussed further in this paper. A diŒerent aspect is

whether bound states of the molecules are present with the inherent question of

chemical recombination and decay. A formulation of kinetic theory that can handle

the latter has been given [29], while aspects of the role of bound states on gas transport

coe� cients is actively being pursued. Rainwater [30] has formulated a theory that

combines several diŒerent density eŒects. His work provides the currently best ® t to

the experimental low density dependence of gas transport coe� cients, but it has not

been derived from a single uni® ed starting point. Attempts to incorporate all aspects

into one concerted theory is in progress, see in particular the thesis by Wei [31].

A particularly useful reference point is the reduction of the quantum Boltzmann to

a set of bimolecular reactions describing the occupation of the various internal states

of the molecules in the gas. This is a special case of the Wang-Chang± Uhlenbeck

equation [2]. As part of this reduction, an explicit connection is made between the

abstract manner in which collisions enter into the Boltzmann equation and standardly

de® ned diŒerential cross-sections and rate constants. To accomplish this reduction,

it is necessary to examine in detail the properties of the transition superoperator
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Relaxation and transport of molecular systems in the gas phase 193

4 3 6 X , . This is somewhat technical but these general properties are important

for understanding the connections between diŒerent applications of the Boltzmann

equation. The properties of the transition superoperator expressed here are drawn

from [18, 32].

3.2. Detailed properties of the transition superoperator 4 = 6 X ,

The M ù ller superoperator is de® ned as the limit, equation (19), of the product of

two evolution superoperators, contrasting free and interacting motion. Formally this

limit only exists [13] when acting on trace class operators, essentially representing

states that die oŒrapidly at large distances. For chemical applications, it is common

to think of wavefunctions with a de ® nite energy, or transitions with a de® nite

frequency (energy diŒerence). For that purpose it is necessary to extend the range of

de® nition of the M ù ller superoperator. This is standardly done by adding a

convergence factor dependent on a small positive number e which can be set to zero

after the limit sensitive computations have been completed. A useful procedure for

accomplishing this is to start with the diŒerential form for the product of the

evolution superoperators

¦
¦ t

exp (– i , t) exp (i + t) =– i exp (– i , t) 6 exp (i + t), (27)

which can be integrated to give the integral form

exp (– i , t) exp (i + t) = 1 – i &
t

!

dt´ exp (– i , t´) 6 exp (i + t´). (28)

For notational simplicity the particle labelling has been dropped even though binary

collisions are being emphasized. As well, since collisions really only involve the relative

motion, it is convenient to consider the energy parameters mentioned in this subsection

as being only for the relative motion (that includes the internal state energy). The limit

t ! ¢ of this gives an alternate form for the M ù ller superoperator, but inserting a

convergence factor and taking the limit gives an extended form for the M ù ller

superoperator that can be applied to non-trace class operators

X , e = 1 – i &
¢

!

dt´ exp (– e t´) exp (– i , t´) 6 exp (i + t´). (29)

Of particular, and general, interest is the transition operator r Ej ª © E ´j ŕ between the

two eigenstates of the non-interacting pair hamiltonian K . These states are labelled

here by their energies, E or E ´ and generic indices j and j´ for particular elements of the

degenerate levels. This operator is an eigenoperator of the free motion superoperator

+ r Ej ª © E ´ j´ r = x
EE

ŕ Ej ª © E ´ j ŕ (30)

with eigenfrequency x
EE ´ 3 (E – E ´) } ò . The eŒect of the extended M ù ller super-

operator on this operator can be expressed in a resolvent (Green’ s function) form

X , e r Ej ª © E ´ j ŕ = r Ej ª © E ´ j ŕ – i &
¢

!

dt´ exp (– e t´) exp (– i , t´)

3 exp (i x
EE ´ t´) r Ej ª © E ´ j ŕ

= 9 1 1
1

x
EE

1́ i e – ,
6 : r Ej ª © E ´ j ŕ 3 X , ( x

EE
1́ i e ) r Ej ª © E ´ j ŕ . (31)
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194 R . F. Snider

The superoperator within square brackets is just the generalization to superoperators,

of the Lippmann± Schwinger equation of scattering theory [33, 34]. There has been

some argument [35± 37] about the diŒerence between the abstract M ù ller superoperator

X , and the resolvent form of equation (31). The latter form depends not only on the

convergence parameter e , but also on the detailed form of the operator on which it

acts, which determines the frequency that enters into the resolvent. This particular

relation arises because of the convergence requirement that the particles become free

in the distant past. The same type of resolvent arises in other theories of the time

dependence of physical phenomena, speci® cally from a Fourier time transform of the

full evolution superoperator, but the usages and how they arise must be carefully taken

into account so as not to confuse the conceptual implications of each approach for the

description of the dynamical behaviour of a physical system.

The M ù ller superoperator transforms non-interacting motion of an operator into

interacting motion. The corresponding transformation for a wavefunction is the

M ù ller operator X . Jauch et al. [13] have rigorously shown that the M ù ller

superoperator can be expressed in terms of the M ù ller operator when acting on a trace

class operator A in terms of the M ù ller operator X , according to

X , A = X A X ‹ . (32)

Essentially both the ket and bra states of the operator are separately transformed. This

has been the method [14, 17, 18] used to relate collisions in a density operator

formalism to the usual wavefunction picture. A more direct relation which emphasizes

the properties of the transition superoperator 4 , is to use Fano’ s approach [38]. This

® rst requires identifying the frequency parametrized transition superoperator

4 (z) 3 6 X , (z) = 6 1 6
1

z – ,
6 . (33)

This is identical in structure (for two particles) to the memory kernel that Fano

introduced for his analysis of the pressure broadening of spectral lines. Fano

introduced a star notation to designate that the starred operator becomes a

superoperator, by which it is to act before all operators to the right of it, for example,

A*B 3 BA implies that A* is a superoperator that changes the operator B into the

operator BA . Any commutator can thus be treated as a combination of two operations,

in particular ò 6 = V – V* and ò , = H – H*. On choosing the contour C ´ in the

complex plane as the line – ¢ ! 2 z´ ! ¢ with ) z " ) z´ " 0, Fano showed that the

Liouville resolvent can be written in terms of hamiltonian resolvents (note that ò ’ s

have been introduced to preserve dimensions and in such a way that the notation is

simplest)

1

z– ò ,
=

1

2 p i &
C ´

dz´
(z´– H )(z´– z– H *)

. (34)

On inserting this relation into equation (33), and performing a number of simplifying

computations, including contour evaluations where they can be explicitly done, see

[37, 38], the transition superoperator can be written

ò 4 (z } ò ) = T(z 1 K *)– T *(K – z)

1
1

2 p i &
C ´

dz 9́ 1

z´– K
–

1

z´– z– K * : T(z´)T *(z´– z) 9 1

z´– K
–

1

z´– z– K * : . (35)
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Relaxation and transport of molecular systems in the gas phase 195

Here the transition operator is de® ned as

T(z) 3 V 1 V
1

z – H
V . (36)

For use in the Boltzmann equation, this parametrized transition superoperator arises

only when the real part 2 z of the parameter z is consistent with the operator on which

it acts, compare equation (31). In particular, the combination of resolvents acting on

a typical energy parametrized operator is (setting z = E – E ´ 1 i e and z´ = x´ 1 i g with

the subsequent notion of the limit e ! 0)

9 1

x´– K 1 i g
–

1

x´ 1 i g – E 1 E ´– i e – K * : r Ej ª © E ´ j ŕ

= 9 1

x´– E 1 i g
–

1

x´– E – i( e – g ) : r Ej ª © E ´ j ŕ !
e !

!

– 2 p i d (x´– E ) r Ej ª © E ´ j´ r . (37)

This has the eŒect of simplifying the expression for 4 (z } ò ) to

ò 4 ( x
EE ´) r Ej ª © E ´ j´ r = T(E ) r Ej ª © E ´ j ŕ – r E

j
ª © E ´ j ŕ T ‹ (E´)

– 9 1

E – K 1 i( e – g )
–

1

E ´– K * – i g : T(E ) r Ej ª © E ´ j´ r T ‹ (E ´). (38)

Here the parametrization of the transition operator T with a real energy E is

understood as the limit lim e !
!
T(E 1 i e ), and the adjoint T ‹ has to approach the real

axis from below rather than above. Similarly the frequency parametrized collision

superoperator is understood as the limit lim e !
!
4 ( x

EE
1́ i ò e ). Speci® cally of im-

portance, and not often emphasized in the literature, is the consequence that the

energy parameter of the transition operator is exactly the energy of the eigenstate of

K on which it acts, and similarly for the adjoint quantities. If a matrix element of the

transition superoperator is calculated, the energy dependences are explicitly displayed

© E § j § r ò 4 ( x
EE ´)( r E j

ª © E ´ j ŕ ) r E ¨ j ¨ ª
= © E § j § r T(E ) r E

j
ª d (E ´– E ¨ ) d

j´ j ¨
– d (E § – E ) d

j § j
© E ´ j ŕ T ‹ (E ´) r E ¨ j § ª

– 9 1

E – E § 1 i( e – g )
–

1

E ´– E ¨ – i g : © E § j § r T(E ) r E
j
ª © E ´ j ŕ T ‹ (E ´) r E ¨ (j ¨ ). (39)

Finally, if one restricts the collisions to be `on-the-frequency-shell ’ , namely that

E § – E ¨ = E – E ´, then the above combination of resolvents reduces to an energy delta

function – 2 p i d (E § – E ) and all transition operators are evaluated `on-the-energy-

shell ’ . It is only under such restricted conditions that a transition operator matrix

element is equivalent to an energy parametrized scattering operator, S(E ), matrix

element on the discrete index

S
j § j

(E ) = d
j § j

– 2 p i © Ej § r T(E ) r Ej ª . (40)

Note that S(E ) is de® ned only on-the-energy-shell, but for such cases the transition

superoperator can be written in the simpler form

© E § j § r ò 4 ( x
EE ´)( r Ej ª © E ´ j´ r ) r (E § – E 1 E ´) j ¨ ª

=
1

– 2 p i
d (E § – E )[S

j § j
(E ) S

j´ j ¨
(E ´)– d

j § j
d

j´ j ¨
]. (41)

It is this form of the collision superoperator that has been used for computations in
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196 R . F. Snider

many applications of the Boltzmann equation, in particular in much of the work on

pressure broadening [39]. W hile standard methods of calculating the eŒects of

collisions only discuss the S matrix, or equivalently the on-the-energy-shell T matrix,

it is seen that this is only valid for use in the collision term of the Boltzmann equation

under restrictive conditions or as an approximation.

3.3. Wang-Chang ± Uhlenbeck equation

In general the density operator for a molecule in the gas, here labelled as molecule

1, has an expansion in eigenstates of H ( " )
"

according to

q ( " )
"

= 3
j " j !"

& & dp
"

dp !
"
r p

"
j
"
ª q ( " )

p1 j " ,p !
" j !"

© p !
"

j !
"
r , (42)

involving the momenta p
"
, p !

"
of the ket and bra states and the molecular internal

states j
"

and j !
"
. If the gas is homogeneous, then the momentum dependence is diagonal.

Furthermore, if the state is determined completely by the concentration c
j
(p

"
) of

molecules in state j
"

with momentum p
"
, then the expansion coe� cient of the density

operator reduces to
q ( " )

p
" j " ,p !

" , j !"
= h $ c

j
(p

"
) d (p

"
– p !

"
) d

j " j !"
. (43)

In the Boltzmann equation, the collision term involves the product of such singlet

density operators and can be written in terms of the relative momentum p =

(m
"
p

#
– m

#
p

"
) } (m

"
1 m

#
) and centre of mass momentum P = p

"
1 p

#
as

q ( " )
"

q ( " )
#

= h ’ 3
j " j #

& & dP dp r P ª r pj ª c
j "

(p
"
) c

j #
(p

#
) © pj r © P r , (44)

with j 3 j
"
j
#

a composite index for the internal states of the pair of molecules and

allowance made for the molecules to be diŒerent with diŒering masses m
"

and m
#
. The

energy of relative motion (including internal states) is then E
j
= p # } 2 l 1 e

j
, l being the

reduced mass. It is this relative energy that enters into the parametrization of the

transition operator, while the centre of mass momentum is unaŒected by the collision

dynamics.

As the density operator for relative motion, see equation (44), is diagonal in

energy, all terms have zero frequency from the point of view of the collision

superoperator. The Boltzmann collision term includes a trace over the states of the

second molecule, which includes an integration over its ® nal momentum p !
#
. Since the

momentum p !
"

of the ® rst molecule is ® xed, the integration over p !
#

is equivalent to an

integration over the centre of mass momentum P . The resulting collision term of the

Boltzmann equation (20) is, after some calculation

© p
"
j
"
r Tr

#
4

" #
q ( " )

"
q ( " )

#
r p !

"
j !
"
ª

= d (p
"
– p !

"
)
h ’

ò
3
j #
& dp

#
© pj

"
j
#
r T(E ´) c

j !"
(p

"
)– c

j "
(p

"
) T ‹ (E ) r pj !

"
j
#
ª c

j #
(p

#
)

1 d (p
"
– p !

"
) 3

j # j "" j "#

h ’

ò & & dp
#

dp § © pj
"

j
#
r T(E § ) r p § j "

"
j "
#
ª © p § j "

"
j "
#
r T ‹ (E § ) r pj !

"
j
#
ª

3 9 1

E § – E ´– i g
–

1

E § – E 1 i( e – g ) : c
j ""

(p "
"
) c

j "#
(p "

#
). (45)

It is because of the conservation of centre of mass momentum that the collision term

is diagonal in momentum. From a diŒerent point of view, a homogeneous system

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Relaxation and transport of molecular systems in the gas phase 197

remains homogeneous. The diŒerence between E and E ´ is entirely due to molecule 1

being in either state j
"

or j !
"
. But it is noticed that, even though the density operators in

the collision term (before the collision) are diagonal in internal state and energy, the

result of the collision can be non-diagonal in internal state and energy. This is a

particular example of how collisions can couple diŒerent frequency components of the

density operator.

A special case is the diagonal-in-internal-state part of the collision term. This has

a simpler structure since this implies that E ´ = E , with the consequence that the term

in the square bracket reduces to 2 p i d (E – E § ). As well, the ® rst term involving the

diŒerence in the transition operator and its adjoint is simpli ® ed through the optical

theorem
© pj r T – T ‹ r pj ª = 2 p i © pj r T d (E – K) T ‹ r pj ª

=– 2 p i 3
j §
& dp § d (E – E § ) r © p

j
r T r p § j § ª r #

=
– ip

(2 p ) $ ò # l
3
j §
& dp# § r pj ! p § j §

. (46)

It is to be understood in the above that, if not otherwise indicated, the energy for which

T is to be evaluated is the eigenenergy of the non-interacting hamiltonian K on which it

acts. Here r p § j § ! pj
is the diŒerential cross-section and p# § is the unit vector associated

with p § . Since the cross-section involves the absolute square of a T matrix element, the

cross-section has the symmetry

(2 p ) % ò # l l § r © pj r T r p § j § ª r # =
p §
p

r p § j § ! pj
=

p

p §
r pj ! p § j §

. (47)

If the discussion is limited to the diagonal-in-internal-state part of the density

operator, equivalently to the concentrations of the diŒerent internal states, the

Boltzmann equation reduces to

¦ c
j "
(p

"
)

¦ t
= 3

j # j "" j "#
& & & dp

#
dp "

"
dp "

#
d (E – E § ) d (p "

"
1 p "

#
– p

"
– p

#
)

p §
l l § p

r p § j § ! pj

3 [c
j ""

(p "
"
) c

j "#
(p "

#
)– c

j "
(p

"
) c

j #
(p

#
)]. (48)

This has used the cross-section symmetry (47). Clearly energy and linear momentum

are conserved in the collision process. This equation can be looked upon as a set of

second order chemical reactions for species distinguished from each other by their

internal state label j and momentum p. If the momentum dependence is further

assumed to be in equilibrium (Maxwellian), then on integrating over p
"
, this equation

becomes

¦ c
j "

¦ t
= 3

j # j "" j "#

[k
j § ! j

c
j ""

c
j "#
– k

j ! j §
c

j "
c

j #
] (49)

which is recognized as a standard set of bimolecular chemical reactions with rate

constants determined by

k
j § ! j

= (2 p ) % ò # l & & r © pj r T r p § j § ª r #
p exp (– p § # } 2 l § k

B
T )

(2 p l § k
B

T ) $ / #
dp# dp §

= 0 8k
B

T

p l § 1
" / # 1

(k
B

T ) # & & & r p § j § ! pj
exp (– E "tr } kT ) E "tr

dE "tr
, (50)
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198 R . F. Snider

where E
tr

is the translational energy and

r
p § j § ! pj

3
1

4 p & & r p § j § ! pj
dp# d#p § (51)

is the angle averaged collision cross-section. It also follows immediately from the

transition operator form for the rate constant, together with energy conservation, that

the forward and reverse rate constants satisfy the chemical equilibrium condition

l $ / # exp (– e
j § } k

B
T ) k

j § ! j
= l $ / # exp (– e

j } k
B

T ) k
j ! j §

. (52)

But it is noted that these reaction rate equations are only strictly valid if the gas is

homogeneous and the density operator restricted to being diagonal in internal states.

Also of note is that the internal state label here denotes individual states, in particular

degenerate states have not been lumped together. Degeneracy factors were a problem

in some of the earlier work where the diŒerence between individual states and

degenerate sets, in particular rotational j states, was not properly taken into account.

In an inhomogeneous gas, the classical distribution function f (r , p, t) is position

dependent. In quantum mechanics this position dependence is associated with an oŒ-

diagonal momentum dependence of the density operator. Rather than keeping track

of oŒ-diagonal elements of the density operator, it is more convenient to express the

position dependence in a classical manner. A standard method of accomplishing this

is via the Wigner function [40]

f
jj ´

(r , p) =
1

h $ & dq exp (iq [ r } ò ) © p 1
1

2
q j r q ( " ) r p –

1

2
q j ª́ . (53)

To include internal states, f
jj ´

(r , p) is here both a density operator in internal states and

a Wigner function for the translational motion. The Wang-Chang± Uhlenbeck

equation [2] is the Boltzmann equation (2) expressed in terms of the W igner function

but restricted, ® rst to being diagonal in internal states, and second, that the collisions

are local, speci ® cally that a collision occurs at one point in space, thus

¦ f
j
(r , p

"
)

¦ t
1

p
"

m
[ ~ f

j
(r , p

"
) = 3

j # j "" j !#
& & & dp

#
dp "

"
dp "

#
d (E – E § ) d (p "

"
1 p "

#
– p

"
– p

#
)

3
p §

l l § p
r p § j § ! pj

[f
j ""

(r , p "
"
) f

j "#
(r , p "

#
)– f

j "
(r , p

"
) f

j #
(r , p

#
)]. (54)

This is an approximation and implies that a separation between macroscopic (¯ uid

¯ ow, temperature diŒerences, etc.) and microscopic (molecular dynamics of collision

processes) motion can be made. A collision occurs within a distance of a few angstroms

whereas gas inhomogeneity is typically on the scale of millimetres. This assumption of

the collision being local was also inherently made in the original Boltzmann equation

[1]. To clearly understand what is involved in making this separation of distance scale,

it is necessary to analyse the eŒects of non-diagonalities in momentum. This is a

lengthy process that is not covered here. An e� cient aid to carrying out this analysis

is the parametrization introduced by Baerwinkel and Grossmann [41]. This para-

metrization has been used to examine corrections to the collisional locality [42], which

are responsible for a major contribution to the density dependence of gas transport

coe� cients [30, 43, 44]. W ith more accurate experimental methods and greater interest

in engineering applications, the understanding and prediction of such density

dependence has become of renewed interest.
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Relaxation and transport of molecular systems in the gas phase 199

3.4. Approach to equilibrium

Boltzmann’ s `H-theorem ’ is equivalent to showing that the collision term increases

the entropy. But it was inherently assumed by Boltzmann that collisions are local, a

constraint on the more general form of the collision term which must be generalized

to being on-the-frequency-shell [18]. But even within the initial constraint of local

collisions, this implies that this is only a local approach to equilibrium, that is to a local

Boltzmann distribution with a local temperature, density and mean (stream) velocity.

But complete equilibrium requires a globally uniform temperature, density and

stream velocity. This occurs only through an interplay between collisional and

streaming motion. W hile this approach to global equilibrium is reviewed only for a

simple case, it is also expressed in terms of diagonal and non-diagonal elements of the

density operator to illustrate how these approach equilibrium. This is analogous to the

approach to equilibrium (in a homogeneous system) which is responsible for the

pressure broadening of spectral lines, spin relaxation and a number of other eŒects

involving internal states. The inhomogeneous and homogeneous cases are discussed in

turn. The following section discusses some aspects of the reversibility± irreversibility

paradox, namely the diŒerence between the invariance of the N-molecule entropy,

equation (9), and the increasing 1-molecule entropy.

3.4.1. Decay to equilibrium in a spatially inhomogeneous system

For a one molecule density operator, the entropy is

S =– k
B

Tr
"
q ( " )

"
ln ( q ( " )

"
} e). (55)

The factor of e here and N ! in equation (8) are required for consistency with the

factorization

q (N ) E 0
j

( q ( " )
j } N ) (56)

(associated with the independence of the molecules in a low density gas, and taking

into account the normalizations of the diŒerent density operators) and to agree at

equilibrium with the standard expression for the entropy from the method of partition

functions.

For simplicity of presentation, the detailed discussion of the approach to global

equilibrium is restricted to using the W ang-Chang± Uhlenbeck equation, whose

collision term is spatially local and whose Wigner function is diagonal in internal

energy, with only comments made about the general case. Expressed in terms of the

W igner function, with internal states, and neglecting quantum corrections, the

entropy can be related, S = ! s(r) dr , to an entropy density

s(r) =– k
B

3
j
& dp

"
f
j
(r , p

"
) ln ( f

j
(r , p

"
) } e). (57)

The equation of change for this entropy density is

¦ s(r)

¦ t
1 ¡ [ 3

j
& p

m
f
j
(r , p) ln 0 fj

(r, p)

e 1 dp 3 r
s

=– k
B

3
j " j # j !" j !#

& & & & dp
"

dp
#

dp !
"

dp !
#
d (E – E ´) d (p !

"
1 p !

#
– p

"
– p

#
)

3
p´

l l ´p
r p´j´ ! pj

ln 0 fj "
(r , p

"
)

e 1 [ f
j !"
(r , p !

"
) f

j !#
(r , p !

#
)– f

j "
(r , p

"
) f

j #
(r , p

#
)]. (58)
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200 R . F. Snider

The divergence term describes how the entropy ¯ ows from one position to another,

speci® cally the entropy ¯ ux is

J
s
=– k

B
3
j
& p

m
f
j
(r , p) ln 0 fj

(r , p)

e 1 dp. (59)

By symmetry, ® rst between molecules 1 and 2, and second between the primed states

and the unprimed, noting the cross-section symmetry of equation (47), the collision

contribution can be written as

r
s
= –

1

4
k

B
3

j " j # j !" j !#
& & & & dp

"
dp

#
dp !

"
d !

#
d (E – E ´) d (p !

"
1 p !

#
– p1 – p

#
)

3
p´

l l ´p
r p´ j´ ! pj

ln 0 fj "
(r, p

"
) f

j #
(r , p

#
)

f
j !"

(r, p !
"
) f

j !#
(r , p !

#
) 1 [ f

j !"
(r , p !

"
) f

j !#
(r , p !

#
)– f

j "
(r , p

"
) f

j #
(r, p

#
)]

& 0. (60)

The form of the combination of W igner functions has the structure (y – x) ln (x } y) %
0, which shows the collisional entropy change to be positive unless

ln (f
j !"

(r , p !
"
)) 1 ln ( f

j !#
(r , p !

#
)) = ln ( f

j "
(r , p

"
)) 1 ln ( f

j #
(r, p

#
)), (61)

which can only be satis® ed if ln ( f
j
(r , p)) is a summational invariant, speci® cally is

linear in mass, momentum and energy. This can be written as

f
j
(r, p) =

n K $

q
int

exp [– (p– mv
!
) # } 2mk

B
T ] exp (– e

j
} k

B
T ), (62)

where K 3 h } (2 p mk
B

T ) " / # is the thermal deBroglie wavelength and q
int

3
R

j
exp (– e

j
} k

B
T ) is the internal state partition function. The number density n,

temperature T and stream velocity v
!

are all functions of the local position r and time

t. It is because the collisions are treated as being local that they drive the Wigner

function to a Boltzmann distribution. But just because the W igner function is locally

Boltzmann, the entropy density is not necessarily constant. Rewriting equation (58) in

the form of a general equation of change

¦ s(r)

¦ t
1 ¡ [ J

s
= r

s
, (63)

gives a description of how the entropy density changes due to the entropy ¯ ux J
s

and

entropy production r
s
. The ¯ ux is usually [45] subdivided into convective and

conductive contributions but such detail is avoided in this presentation.

Corresponding to a local Boltzmann distribution for the Wigner function, the

collision term in the W ang-Chang± Uhlenbeck equation vanishes, to be left with

¦ f
j
(r , p

"
)

¦ t
1

p
"

m
[ ¡ f

j
(r , p

"
)

= 9 ¦ ln n

¦ t
1

p
"

m
[ ¡ ln n 1 0 (p – mv

!
) #

2mk
B

T
–

3

2
1

e
j
– © e ª
k

B
T 1 0 ¦ ln T

¦ t
1

p
"

m
[ ¡ ln T 1

1 0 ¦ v
!

¦ t
1

p
"

m
[ ¡ v

! 1 [ p
"
– mv

!
k

B
T : f

j
(r , p

"
). (64)
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Relaxation and transport of molecular systems in the gas phase 201

Thus any position dependence of the density, stream velocity and temperature will

cause the W igner function to change. For example, if only the density is treated as

being non-uniform, then by formal integration

f
j
(r , p

"
, t) = n 0 r 1

p – mv
!

m
t, 0 1 f

j
(r , p

"
, 0) (65)

shows how the distribution function changes with time from an initial state at t = 0,

becoming in general a non-Maxwellian momentum distribution. The global approach

to equilibrium is thus seen as a combination of the collisions driving the distribution

function to a local Boltzmann distribution, while the free motion terms mix the local

Boltzmann distributions to drive the distribution away from being Boltzmann. In this

simpli ® ed discussion, no account is made of the relative sizes of diŒerent cross-sections

so no assessment can be made as to whether one particular non-equilibrium mode

reaches equilibrium before another. For example, usually the e� ciency for changes in

vibrational state is much slower than for rotational states and this is of importance in

describing the detailed mechanism by which relaxation to global equilibrium occurs.

Finally it is useful to discuss the approach to equilibrium in an inhomogeneous

system in density matrix form using the momentum representation rather than in

terms of the W igner function. To simplify the collisional structure, it is assumed that

most of the molecules are in homogeneous equilibrium, so that as far as a collision is

concerned, only one of the colliding pair is out of equilibrium at a time, with the

consequence that the collision term can be linearized. On linearization, the collision

term can be written in terms of a set of relaxation times. For further simpli ® cation, the

presence of internal states is ignored.

The density operator in momentum representation can be recovered from the

W igner function by the inverse Fourier transform

© pj r q ( " ) r p´ j ª́ = & dr exp (i(p´– p) [ r } ò ) f
jj ´ 0 r,

1

2
(p 1 p´) 1 . (66)

Under the simpli ® cations posed above, the linearized Wang-Chang± Uhlenbeck

equation without internal states (identical to a linearization of the original Boltzmann

equation but for a real (quantum) cross-section) reduces to the set of linear equations

¦ © p r q ( " ) r p ª́
¦ t

= –
i

ò 0 p #

2m
–

p #́

2m 1 © p r q ( " ) r p ª́ –
1

s pp ´
© p r q ( " ) r p ª́

1 & dp § K 0 p 1 p´
2

, p § 1 - p § 1
p – p´

2
r q ( " ) r p § –

p – p
2 . . (67)

These are partially uncoupled, in that terms with diŒerent momentum oŒ-diagonalities

are uncoupled from each other. The relaxation time s pp ´ and the integral kernel K ( ¼ )

can be expressed in terms of collision cross-sections. W hat is of note is the structure of

this equation, namely the evolution is governed by a frequency for the dynamical (free)

motion and a relaxation due to collisions so that the magnitude of the oŒ-diagonal

element of the density operator is governed by a combination of free and collisional

motion. In the Wigner representation the free motion is expressed as a position

dependence while the collisions change only the momentum dependence. This same

structure is also valid after linearization for the more general Boltzmann equation but

with a possibly complex relaxation time. For the decay of internal motion there is a

similar behaviour, as is now discussed.
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202 R . F. Snider

3.4.2. Decay to equilibrium of the internal states

The object of this subsection is to illustrate the dynamics of internal state

behaviour according to the Boltzmann equation. Of particular interest are the

properties of the collision term. To keep the presentation short, several simplifying

assumptions are made. These are : (i) the gas is homogeneous and the momentum

distribution M axwellian ; (ii) the gas is a mixture in which only one species has internal

states and this species has a very small concentration so that all collisions involving

internal state changes can be treated as between an inert molecule and a molecule of

the species with internal states, with the consequence that the Boltzmann equation is

reduced to being linear in the internal state density operator.

A typical internal state density matrix element J
jj ´

is associated with the singlet

density operator q ( " ) according to

© pj r q ( " ) r p´ j´ ª = h $ J
jj ´

exp (– p # } 2mk
B

T )

(2 p mk
B
) $ / #

d (p – p´), (68)

compared with equation (43). The Boltzmann equation is then equivalent to

¦ J
jj ´

¦ t
=– i 0 e j

– e
j´

ò 1 J
jj ´

– 3
j § j ¨

R
jj ´ ; j § j ¨

J
j § j ¨

, (69)

where the relaxation matrix R is

R
jj ´; j § j ¨

=
(2 p ) $ inò #

(2 p l k
B

T ) $ / # & dp [ © pj r T(E § ) r pj § ª d
j´ j ¨

– d
jj § © pj ¨ r T ‹ (E ¨ ) r pj´ ª ] exp (– p # } 2 l k

B
T )

1
(2 p ) $ inò #

(2 p l k
B

T ) $ / # & & dp dp § © pj r T(E § ) r p § j § ª © p § j ¨ r T ‹ (E ¨ ) r pj ª́

3 9 1

E ¨ – E ´– i g
–

1

E § – E 1 i( e – g ) : exp (– p § # } 2 l k
B

T ). (70)

Here the primes on the E are associated with the primes on the internal state label j,

while the translational contribution is p # } 2 l for E and E ´, and p § # } 2 l for E § and E ¨ .

Of particular use for understanding this evolution is the separation between how the

matrix element evolves as if it was isolated and how it couples to other matrix

elements. The isolated part of the evolution involves the relaxation matrix

R
jj ´ ; jj ´

3 i D x
jj

1́ 1 } s
jj
,

=
(2 p ) $ inò #

(2 p l k
B

T ) $ / # & dp [ © pj r T(E ) r pj ª – © pj ŕ T ‹ (E ´) r pj ª́ ] exp (– p # } 2 l k
B

T )

–
(2 p ) % nò #

(2 p l k
B

T ) $ / # & & dp dp § © pj r T(E ) r p § j ª © p § j ŕ T ‹ (E ´) r pj ª́

3 d 0 p § # – p #

2 l 1 exp (– p # } 2 l k
B

T ). (71)

It is possible to identify explicit expressions for the real 1 } s
jj ´

and imaginary D x
jj ´

parts

of this relaxation matrix element but that detail is not carried out here. It is also
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Relaxation and transport of molecular systems in the gas phase 203

noticed that, for this case, the transition matrix elements are on-the-energy-shell, so

can be written in terms of the S-matrix. W ith these notations, the evolution equation

(69) for J
jj ´

becomes

¦ J
jj ´

¦ t
=– 0 1

s
jj ´

1 i x
jj 1́ J

jj ´
– 3

{j § j ¨ }1 {jj ´}
R

jj ´ ; j § j ¨
J

j § j ¨
, (72)

with the frequency of oscillation of J
jj ´

given as the sum

x
jj ´

=
e
j
– e

j´

ò
1 D x

jj ´
(73)

of the natural independent particle frequency and a collisional shift associated with the

interactions with other molecules in the gas. As a last association, if the potential is

weak enough, the transition operator T can be approximated as the potential operator

V , in which case the collisional shift becomes the diŒerence in ® rst order perturbation

contributions to the internal energy levels

D x
jj ´

=
n

(2 p l k
B

T ) $ / # & dp [ © pj r V r pj ª – © pj ŕ V r pj ª́ ] exp (– p # } 2 l k
B

T ). (74)

The collisional decay rate is at least quadratic in the potential and consists of a number

of terms which are not detailed here. A general discussion of how these collisional

frequency shifts are related to the Boltzmann collision superoperator is given in [32],

while Born and distorted wave Born approximations to them are discussed in [46].

Often in experimental situations there is a steady driving force applied to the

chemical system, for example by the application of an electrical ® eld or by a

temperature diŒerence. If the eŒective rate at which the matrix element J
jj ´

is excited

is a
jj ´ (replacing (– times) the sum in equation (72)), then the time dependence is

determined both by relaxation and oscillation according to

J
jj ´(t) = exp (– (i x

jj
1́ 1 } s

jj ´
)t) J

jj ´
(0) 1

1 – exp [– i( x
jj

1́ 1 } s
jj ´

) t]

1 } s
jj

1́ i x
jj ´

a
jj ´

. (75)

The exponential terms represent transients while after the transients have died out, the

steady state value of J
jj ´

is given by

J
jj

ŕ
steady state

=
1

1 } s
jj

1́ i x
jj ´

a
jj ´

=
1 } s

jj ´
– i x

jj ´

1 } s #
jj !

1 x #
jj !

a
jj ´. (76)

For the particular case in which a
jj ´

is real, this gives the real and imaginary steady state

parts of J
jj ´

. This result can be related to the in-phase and out-of-phase response of a

system to a driving force but it is emphasized that the frequency is the natural

frequency of the system rather than being an externally applied oscillation. It is seen

that the larger the frequency x
jj ´

, the smaller the steady state magnitude of J
jj ´. This

result is termed [47] the eŒect of `partial phase randomization ’ and was emphasized

when discussing the qualitative interpretation of the magnetic ® eld dependence of gas

transport coe� cients, see section 5. In the general approach to equilibrium, it is this

eŒect that is responsible for causing the density operator to become diagonal in energy
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204 R . F. Snider

representation. While the discussion in this subsection is for the approach to

equilibrium for internal states, the same argument can be applied to the position

dependence of translational motion, compare equation (67). It was suggested in [18]

that it is this eŒect which gradually eliminates oŒ-diagonal in energy terms in the

density operator so that Boltzmann’ s H-theorem will eventually become valid and

complete equilibrium attained.

3.5. DiŒerent entropies

The exact evolution of a N -molecule system leaves the N-molecule entropy S (N )

constant, see equation (9). In contrast, the Boltzmann equation, in particular the H-

theorem in terms of the local entropy production r
s
, see equation (60), increases the

entropy until equilibrium is reached. This inconsistency is referred to as the

reversibility± irreversibility paradox, the discussion of which started with Boltzmann’ s

introduction of his kinetic equation. Some comment is made here about this paradox

and how it is to be understood. The following discussion makes use of the association

between the concept of entropy and Shannon’ s [48] neginformation.

It must ® rst be recognized that the N-molecule entropy S (N ), equation (8), and the

1-molecule entropy S ( " ), equation (55), are inherently diŒerent in nature, only being

equal when the N-molecule density operator factorizes, equation (56). That entropy

may have diŒerent faces has been nicely presented by Grad [49], with a hierarchy of

entropies associated with the reduced distribution functions and the possible relations

between them. W hat is missing in the factorization of the N-molecule density operator

is all the (equilibrium) particle correlations that are present in a dense gas, and more

relevant for dilute gas kinetic theory, all the correlations that arise as the molecules

collide and thus in¯ uence each others future evolution.This picture of the development

of more and more complicated correlations has been emphasized by Prigogine [50].

Thus Prigogine expresses this as a ¯ ow of information from lower to higher ordered

correlations. In particular, all the information in an initial state, which could be

completely contained in the 1-molecule density operator if the factorization of

equation (56) is exact at the initial time, ¯ ows into higher correlations. Since S ( " )

measures only the neginformation in q ( " ), this neginformation increases since

information has been removed from the 1-molecule density operator.

A related approach, though not directly related to gas kinetic theory and the

Boltzmann equation, is the linear theory of Zwanzig’ s [51] Generalized M aster

Equation. In his excellent Boulder lecture [51], he reviews previous related work and

presents a simplistic model which shows how decay to equilibrium is valid only for a

time-scale large to the individual dynamic (collision) time-scale, but small compared

to the periodicity time-scale (Poincare! recurrence time) for the N-molecule system.

This illustrates the subjectivity of what any experiment is capable of observing.

4. Spin relaxation

Spin systems have several experimental and theoretical advantages. Since the

Zeeman energy is very small compared to normal thermal energies, there is little

in¯ uence on the rest of a chemical system as a spin is excited and relaxes to

equilibrium. Thus modifying a spin state is experimentally a non-invasive method of

monitoring a chemical system. From the theoretical point of view, the small energy

changes imply that, as a good approximation, the spin system can be treated as if only

the spin system is out of equilibrium. As a consequence, the small number of degrees

of freedom greatly simplify the mathematics. On the other hand, it is necessary to treat
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Relaxation and transport of molecular systems in the gas phase 205

each spin state in detail since the small number of degrees of freedom imply that the

usual statistical averaging that occurs in large systems, and often smooths out any

novel eŒect that a particular state may have, is absent. Only a spin ± 1 } 2 system is

considered here, while the treatment of systems with higher spins rapidly becomes

more complicated in detail due to the presence of higher multipole moments.

The dynamics of a spin system can be classi® ed according to whether it is due to :

(i) external (Zeeman hamiltonian) in¯ uences; (ii) intramolecular interactions (typically

hyper® ne or dipolar interaction); and (iii) intermolecular interactions. In the gas

phase, intermolecular interactions occur as collisions. For a typical nuclear spin, the

small spin energy has negligible eŒect on the collision (translational) dynamics, nor is

it much aŒected during a collision. Thus the direct in¯ uence of a collision on the

dynamics of a spin is of lowest order of importance and can usually be ignored if there

are intramolecular spin interactions. The formulation of nuclear magnetic relaxation

from a Boltzmann equation perspective has been presented in the case when no

intramolecular interactions are present [52], and when spin± rotation and } or dipolar

interactions dominate the relaxation [53]. Recent work on muon relaxation [54, 55] has

applied the same or more complex dependence on intramolecular interactions. As the

intramolecular mechanism with the simplest formulation, the spin ± rotation inter-

action is reviewed with emphasis on exemplifying the aspects of an intramolecular

mechanism.

The object of interest is the expectation value © I ª of the (nuclear) spin I in units of

ò . This varies with time due to the Zeeman hamiltonian H
ZI

=– c
I
ò B [ I and the

spin± rotation hamiltonian H
sr

= c
sr

ò I [ J. The latter hamiltonian couples the spin to

the molecular rotational angular momentum J, which is in turn controlled by its own

Zeeman hamiltonian H
ZJ

=– c
J

ò B [ J, the rotational hamiltonian H
J

= J(J 1 1)

ò # } 2 (for a diatomic with moment of inertia ), the spin ± rotation hamiltonian and
by collision processes. Thus the evolution of the spin system is not directly aŒected by
collisions, but is indirectly aŒected by collisions through the intermediary of the

rotational angular momentum. In terms of the Boltzmann equation (20), the spin

Liouville superoperator is the commutator of the spin hamiltonian

K = H
ZI

1 H
ZJ

1 H
sr

1 H
J
. (77)

Since the Zeeman energies are all small compared to thermal energies, except well

below 1 K, it is appropriate to treat the translational degrees of freedom as being at

equilibrium, whose only role is to provide a thermal average for any collision cross-

section for the rotational angular momentum, thus the translational kinetic energy

hamiltonian has been dropped. On recognizing that the rotational energy level

separation is very large compared to the Zeeman energy level separation, it follows

that the low energies involved in the experiment will be insu� cient to cause a

signi® cant number of J transitions, so the density operator can be assumed diagonal

in J. A further argument for the validity of this is that, on the time-scale for Zeeman

frequency eŒects to be observed, equivalently that Zeeman energy level separations

play an important role, rotational energy level diŒerences have all been phase

randomized (compare the discussion of equation (76)), so again, the density operator

is eŒectively diagonal in the rotational angular momentum magnitude quantum

number J. To make the treatment even simpler, it is assumed that only one value of J

needs to be retained. Essentially this is assuming that all J states act in a similar manner

and one can lump them together into one eŒective J value. It is then only the

directional aspects of the spin I and rotational angular momentum J that need to be
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206 R . F. Snider

considered. The treatment is formally the same if the rotational angular momentum J
is replaced [54] by an electron spin S , whose magnitude is of course ® xed. Of course the

details of the collision processes must be diŒerent, but the formal treatment is the

same.

At equilibrium, the spin and rotational angular momentum expectation values are

both determined by the spin hamiltonian, but on the basis that all terms are small

compared to thermal energies (with a single J value, H
J

is a constant that cancels in the

normalization of the equilibrium density operator), a linearization of the Boltzmann

factor is appropriate so that

© I ª r
equil.

3
Tr I exp (– K } k

B
T )

Tr exp (– K } k
B

T )

=
Tr I(1 – K } k

B
T )

Tr (1 – K } k
B

T )
=

(2J 1 1)(1 } 2) c
I
ò } k

B
T

(2J 1 1)2
B , (78)

which is equivalent to Curie’ s law for an equilibrium magnetic moment. The trace is

over both spin and rotational degrees of freedom, so in the denominator where only

the `1 ’ contributes, the factor of 2J 1 1 is the degeneracy of the rotational level and the

2 is for the two spin states. Technically the trace over a single spin operator vanishes,

most importantly because the trace must be a rotational invariant and a spin

(pseudo) vector has no rotationally invariant part. On the other hand the trace over a

product of spin operators depends on which components of the operators are

involved, speci ® cally if they are diŒerent, the trace is zero, while if they are the same,

the trace is 1 } 3 of the square of the magnitude of the angular momentum times the

degeneracy of the level, thus for the spin traces

Tr
I
I
x
I
y
= 0 ; Tr

I
I
x
I
x
= (1 } 3) 3 (3 } 4) 3 2 = 1 } 2. (79)

That is why the spin expectation value is in the ® eld direction.

If the spin is out of equilibrium, the density operator deviates from its equilibrium

Boltzmann form, conveniently written as

J = J r
equil.

(1 1 u ) E
1 – K } k

B
T 1 u

2(2J 1 1)
. (80)

Since the spin hamiltonian is small, everything is merely additive and the equilibrium

term can be subtracted out and ignored in the following. The `perturbation ’ operator

u is a function of I and J, so that it may be expanded in powers of these angular

momentum operators. To terms at most linear in each angular momentum, this

expansion is

u = 4I [ © I ª 1
3

J(J 1 1)
J [ © J ª 1

12

J(J 1 1)
JI : © IJ ª 1 ¼ . (81)

The coe� cients of this expansion are identi ® ed as expectation values through the

explicit calculation of the expectation values. For the second rank tensor involving the

product of the angular momentum operators, the double dot contraction is by

convention taken as contracting nearest tensorial indices. That there is no constant

(angular momentum operator independent term) is because normalization must be

preserved. Higher powers of the angular momenta may be considered. But for a

spin± 1 } 2 system, the product of any two spin operators is a spin operator, the terms
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Relaxation and transport of molecular systems in the gas phase 207

linear in I cover all possibilities. On the other hand, higher powers of J can in prin-

ciple occur, all the way up to the 2Jth, the eŒect of these higher angular momentum

multipoles on the relaxation of the spin depend on powers of the spin± rotation

constant c
sr

, which here is taken as being small. In the hyper® ne case, J is replaced by

an electron spin S, and while the hyper® ne constant may be large, now all operators

of quadratic, or higher powers, can be re-expressed in terms of being at most linear

in S.

It has previously been stated that the spin is negligibly aŒected by collisions, so that

only the rotational angular momentum, which is tied to how the molecular frame

moves, is modi® ed by collisions. Thus in the Boltzmann equation, as the collision term

involves the perturbation u of the spin density operator J , only those terms containing

J will be aŒected by collisions. Retaining only quantities that are at most linear in u ,

the Boltzmann equation (20) can be linearized

¦ u

¦ t
=– i + u – 2 u , (82)

to involve a `linear ’ relaxation superoperator 2 , compare the matrix representation,

equation (69), of the linearized Boltzmann equation retaining the full internal state

density operator J . W hile I is unaŒected by collisions, collisions will cause J to decay

to its equilibrium (Curie law) value, or for the perturbation contribution which is

relative to equilibrium, to 0. M oreover, since the collisions are isotropic (it was stated

that the Zeeman energies are negligible compared to thermal energies, so can be

ignored when calculating the transition operator), then the eŒect of 2 on J is

equivalent to a relaxation time s ,

2 J = J } s . (83)

Technically there can be a diŒerence in the eŒect of 2 if it acts on the product IJ , since

in that case it must be the same molecule before and after the collision that carries the

`polarization ’ IJ , while if the polarization only involves J, then there is a possibility of

transfer of polarization from one collision partner to the other. These subtleties are

ignored here. On calculating the expectation values of the linearized Boltzmann

equation (82) within the approximations mentioned above, the closed set of three

tensorial kinetic equations [54]

¦ © I ª
¦ t

=– x
I
B# 3 © I ª – c

sr
© I 3 J ª , (84)

¦ © J ª
¦ t

=– x
J

B# 3 © J ª 1 c
sr

© I 3 J ª –
1

s
© J ª , (85)

¦ © IJ ª
¦ t

=– x I B# 3 © IJ ª 1 x
J

© IJ ª 3 B# 1 c
sr

e [ 0 13 J(J 1 1) © I ª –
1

4
© J ª 1 –

1

s
© IJ ª (86)

for the expectation values are obtained. Here x
I
= c

I
B and x

J
= c

J
B are the

magnitudes of the Zeeman precession frequencies for the spin and the rotational

motion. These have been slightly generalized here to allow J to have any value, whereas

in [54], J appeared only as the electron spin S = 1 } 2. The Levi± Civita tensor e has been

used in the above. This is a third rank antisymmetric tensor, having components

e
jkl

=‰ 1 according to whether j, k, l as a cyclic or anticyclic permutation of the x, y,
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208 R . F. Snider

z coordinates, and zero if two or more labels are the same. Since each vector has 3

components, these three tensorial equations are equivalent to 15 scalar equations.

Their solution determines the time dependence of the coupled motion of the spin and

rotational angular momenta.

The symmetry of the system, and the kinetic equations, is C ¢ v
with the magnetic

® eld direction B# providing the symmetry axis. Thus solutions can be broken down [54]

into sets corresponding to the irreducible representations of C ¢ v
. For spin relaxation

one needs only the solutions containing components of © I ª which can also be

decomposed into irreducible representations of C ¢ v
, namely the invariant part

© I ª [ B# and the counterclockwise and clockwise rotating parts © I ª [ (xW ‰iyW ), with xW , yW
and B# a clockwise set of unit vectors. These correspond to the longitudinal and

transverse components of the spin. Only the longitudinal relaxation of the spin is

treated in greater detail here. The equations for the longitudinal system can be written

in a number of ways ; in [54] the association was motivated by classifying the operators

according to the eigenstates of the spin hamiltonian since c
sr

is considered to be large

compared to the Zeeman energies, while in [53] the emphasis was on the individual

spins since c
sr

was considered to be small. These sets of equations are of course

equivalent, diŒering only in a change of basis. It is the latter description which is most

easily seen from the tensorial equations (84), to give the set of four equations

¦ © I
B
ª

¦ t
=– c

sr
© I 3 J [ B# ª , (87)

¦ © J
B
ª

¦ t
=1 c

sr
© I 3 J [ B# ª –

1

s
© J

B
ª , (88)

¦ © I 3 J [ B# ª
¥ t

=– ( x
I
– x

J
) © I

B
J
B
– I [ J ª 1 2c

sr 0 13 J(J 1 1) © I
B
ª –

1

4
© J

B
ª 1 – 1

s
© I 3 J [ B# )

(89)

¦ © I
B

J
B
– I [ J ª

¦ t
= ( x

I
– x

J
) © I 3 J [ B# ª –

1

s
© I

B
J
B
– I [ J ª . (90)

If these are written in matrix form whose eigenvectors are to be found, namely in the

form

¦ V

¦ t
= M V = k V , (91)

with the four-dimensional vector having components © I
B
ª , © J

B
ª , © I 3 J [ B# ª and

© I
B

J
B
– I [ J ª , then the secular determinant for the eigenvalues k is

r M – k r =
0

– k

#
$
c

sr
J(J 1 1)

0

– k –
1

s

0

– "
#

c
sr

0

c
sr

– c
sr

– k –
1

s

( x
I
– x

J
)

0

0

– ( x
I
– x

J
)

– k –
1

s

= 0 k 1
1

s 1 9 k $ 1
2

s
k # 1 k 0 1

s #
1

1

2
c #

sr
1

2

3
c #

sr
J(J 1 1) 1 ( x

I
– x

J
) # 1

1
2

3 s
c #

sr
J(J 1 1) : = 0. (92)
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Relaxation and transport of molecular systems in the gas phase 209

Experimentally, it is usually only the slowest decay that is observed. For a weak

coupling constant, in the sense that c #
sr

s # ’ 1 and c #
sr

’ ( x
I
– x

J
) # , the eigenvalue with

smallest negative real part is

k =–
#
$

c #
sr

J(J 1 1) s

1 1 ( x
I
– x

J
) # s #

, (93)

the result of [53], and a standard result [56] of NMR for the `spin± lattice ’ relaxation

time T
"
= 1 } k when the decay is due to a spin ± rotation mechanism. W hile the standard

method uses a time correlation function method with an introduction of a correlation

time s , the gas kinetic approach presented here has the advantage that s is a well

de® ned collisional quantity which may be calculated from an appropriate collision

cross-section

1

s
=

1

J(J 1 1)
© J [ 2 J ª . (94)

The nature of the frequency and density (pressure) dependence can be explained in

terms of collision rate and partial phase randomization, see the discussion following

equation (76). As 1 } s is proportional to the pressure, it is seen that at high pressures,

s vanishes and the spin lattice relaxation rate 1 } T
"
= k becomes very small. This is

traced to the rapid decay of © J ª , so there is no rotational angular momentum with

which the spin can couple. On the other hand, at low pressures, s becomes very large

and the spin is phase randomized, again leading to a very small spin ± lattice relaxation

rate.

The other extreme is when the coupling constant is large, such that if c #
sr

s # ( 1 and

c #
sr

( ( x
I
– x

J
) # , then the spin and rotational angular momenta relax together as an

eŒective total angular momentum F = I 1 J. In this case the slowest decay rate,

eigenvalue k of smallest negative value, is given by

k =–
#
$
J(J 1 1) } s

"
#
1 #

$
J(J 1 1) 1 ( x

I
– x

J
) # } c #

sr

. (95)

For H-atom-like radicals, the rotational angular momentum J in the above formulae

can be replaced by the electron spin S , whose magnitude S of 1 } 2 and negative

gyromagnetic ratio require replacing x
J

by the relatively large – x
S
. At the same time,

the coupling constant c
sr

becomes the hyper® ne constant x
!
, so that the slowest decay

rate is

k =
– 1

2 s [1 1 ( x
I
1 x

S
) # } x #

!
]
. (96)

This is what is reported in [54] for the muon spin relaxation rate in longitudinal ® elds.

In that reference, connection is also made to other experimental decay rate

measurements. These diŒer in what exactly is measured, so that the slowest decay rate

is not always what is observed. Thus an analysis, not only of the precession± relaxation

eigenvalues is needed for an elucidation of the observations, but the detailed form of

the eigenvectors is also required.

As stated at the beginning of this section, only the intramolecular spin± rotation

mechanism of spin relaxation is discussed in detail in this review, and then only the

formulae for longitudinal decay have been presented. For most molecules there can be

several angular momenta present and then the theoretical treatment requires assessing
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210 R . F. Snider

which spin couplings are of how much importance in order to interpret the

experimental data. Recent work in this direction [55] has been addressed to the data on

muon spin relaxation in molecular addition radicals. The stable radical C
#
H

%
Mu,

formed by the addition of muonium, l +e Õ , to ethylene, C
#
H

%
, has a muon spin I,

(unpaired) electron spin S and rotational angular momentum J, besides a number of

proton spins. On the basis that the electron’ s gyromagnetic moment is about 1000

times that of the other spins, the behaviour of the electron spin should dominate the

relaxation of all spins. The muon spin is what is observed, while collisions aŒect only

the rotational angular momentum. Since the proton spins play no inherent role in the

muon spin relaxation, they were ignored in that work. Still, to describe all the

operators involving the three remaining angular momenta, a reduction based on the

irreducible representations of the group C ¢ v
was made. This was further simpli® ed by

allowing at most terms quadratic in J. Even so, for the treatment of the longitudinal

relaxation (experimental observation of the spin along the magnetic ® eld direction), a

35-dimensional (real) basis of angular momentum operators was needed. For the

transverse (measurement of the spin perpendicular to the magnetic ® eld direction), the

basis was 30-dimensional, but now complex. Eigenvector solutions of the corre-

sponding kinetic equations then give respectively 35 and 30 precession± relaxation

modes for the motion of the spin system. Comparison between theory and experiment

involves ® nding the values of the coupling constants and collision decay rates that best

® t the experimental data. Since these quantities are not known a priori, the procedure

consists of a search in a multidimensional parameter space for the best ® t. It was

further discovered that the eigenvector that is responsible for the muon spin relaxation

was not the one with the slowest decay rate so an analysis of the nature of the

eigenvectors was also required. That the smallest decay rate was not what was being

observed was indicated when comparison was made between the experimentally

observed precession frequency in the experimental transverse con® guration and the

oscillation predicted by theory, that is, by the imaginary part of a complex transverse

eigenvalue. The radical COM u formed by the addition of muonium to carbon

monoxide is unstable. Thus the muon spin relaxation is also aŒected by the formation

rate and lifetime of the radical. The theoretical treatment then requires assessing how

the spin variables are aŒected during the chemical formation and decay. A ® rst

attempt in this direction has been made [57].

5. Transport coe� cients

The transport of mass, momentum and energy are of obvious importance in

engineering processes. There are of course other quantities that may be transported,

such as charge or spin angular momentum. But all transport arises in general due to

a combination of convective and conductive motion. The former is due to the general

movement of the gas as a whole, whereas the conductive transport is relative to the

centre of mass of the gas as a whole and can be thought of as associated with Brownian

motion and usually governed by a set of transport coe� cients. A complete treatment

of gas transport theory is very lengthy with many facets. The classic references [58, 59]

emphasize the calculation of the transport coe� cients for molecules without internal

states whereas the work on polyatomics is reviewed by M cCourt et al. [60]. There are

innumerable books that describe gas kinetic theory with a variety of detail and

emphasis, a selection being [16, 61± 66]. The more mathematical aspects of how the

equations of hydrodynamics are related to the Liouville equation is discussed by

Chapman and Cowling [58] but greater detail is given in [67± 70]. There are also
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Relaxation and transport of molecular systems in the gas phase 211

Green ± Kubo formulae for the transport coe� cients [71]. Another facet of gas

transport is the set of problems at low density, where molecules can travel long

distances before they suŒer a collision. Aspects of this Knudsen ¯ ow are extensively

covered by Cercignani [70] while some of the eŒects of Knudsen corrections to

polyatomic transport theory are reviewed in [60]. The discussion in this section is

limited to a review of the essential features of how internal states in¯ uence gas

transport in a simple case, drawn predominantly from [47, 72].

The transport coe� cients are the linear proportionality constants for the

conductive transport of a physical property due to an inhomogeneity in the ¯ uid (gas).

Thus in a multicomponent mixture the amount of conductive transport of each species

due to the concentration gradients of the diŒerent species is determined by a set of

diŒusion coe� cients while conductive momentum transport due to a velocity gradient

is governed by a set of viscosities and conductive energy transport due to a temperature

gradient is governed by a set of thermal conductivities. The ¯ uid as a whole may move

(convect) with a stream velocity v
!
, which can carry physical properties such as

momentum and energy because the ¯ uid itself is moving. This is the convective

transport. W hile not always the most useful for practical (experimental) purposes, the

conceptual separation between convective and conductive motion is based on the fact

that it is an unbalanced net force that causes mass to move, so this net mass motion

is convection. Thus the stream velocity (convection velocity) is identical to the mass

average velocity of the ¯ uid. Conductive transport is in addition to this, having no

direct in¯ uence on or by the motion of the ¯ uid as a whole.

It was stated in the above that the transport coe� cients arise from a linear

dependence on inhomogeneities. This requires, both that the discussion is about local

properties of the ¯ uid and that the variation of the ¯ uid properties from one spatial

point to another, and with time, is slow. This is usually referred to as the assumption

of local equilibrium or local thermodynamic equilibrium, LTE. Thus at any point r in

space and time t, the ¯ uid is parametrized by a density n(r , t), a temperature T(r , t) and

stream velocity v
!
(r , t). In a multicomponent mixture, there must be a density for each

species together with species velocities and, depending on the system and its mode of

treatment, possibly separate temperatures for each species. From the point of the

Boltzmann equation, thermodynamic equilibrium in particular arises because of

collisions. Thus the LTE and the validity of describing the dynamics of a ¯ uid in terms

of local quantities, requires that the molecular motion is collision dominated. This in

turn requires, for a gas, that the gas be dense enough that many collisions occur within

the range of time and space over which the ¯ uid varies negligibly in its physical

properties. The rate at which collisions occur is in essence proportional to the product

of the density, the mean molecular (Brownian motion) relative velocity v̀ 3 (8 p l }
k

B
T ) " / # and some eŒective cross-section r . If the gas is to be treated ideally, there is also

the condition that the second virial coe� cient contributes negligibly to the equation

of state. Since the second virial coe� cient can be considered proportional to the cube

of some eŒective molecular diameter d, this requires nd $ ’ 1. In contrast, the cross-

section scales as the square of the molecular diameter, so LTE requires n p d # ( 1 } L ,

where L is a typical distance over which the ¯ uid has constant physical properties.

Grad’ s [68] mathematical manner for satisfying these conditions is to take the limit

that n ! ¢ and d ! 0 in such a way that nd # is ® n ite. This was Grad’ s argument for

the validity of the Boltzmann equation, which can be interpreted as saying that the

Boltzmann equation is valid in the limit that the molecules become smaller and

smaller, while their density becomes larger and larger. In a crude sense, the molecules
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212 R . F. Snider

are very small but there are so many of them that they undergo lots of collisions. The

condition on L that it is so large that L ( 1 } n r is the condition for LTE while, if this

inequality is not satis® ed, then the gas is approaching the Knudsen regime.

The following discussion is limited to a one component gas where local

thermodynamic equilibrium is applicable. The density operator for such a system is

most easily expressed in terms of a W igner function for the translational states and a

density operator in internal states, see equation (53). This will be dominated by a local

equilibrium W igner function± density operator

f ( ! ) (r , p, t) =
n K $

q
int

exp [– (p – mv
!
) # } 2mk

B
T ] exp (– H

int
} k

B
T ), (97)

of the same structure as the equilibrium W igner function-density operator of equation

(62), but whose density, temperature and stream velocity are all position and time

dependent. It is for this reason that the W igner function is convenient, since in phase

space, the quotient of the kinetic energy operator p # } 2m and the position dependent

temperature is easily carried out whereas, as operators, since position and momentum

do not commute, it is di� cult to consider how to represent such a quotient. Deviations

from this local equilibrium Boltzmann distribution are standardly treated as a

perturbation u ,

f(r , p, t) = f ( ! )(r , p, t) 1
1

2 9 f ( ! )(r , p, t), u :
+

, (98)

which in general does not commute with the internal state hamiltonian H
int

so one way

to maintain u hermitian, is to use an anticommutator, compare the various methods

of linearization of a perturbation to the Boltzmann density operator discussed in [73].

Since phase randomization (see the discussion following equation (76)) will cause the

density operator to be diagonal for internal state energy diŒerences such that D e } ò (
1 } s = n p d # v̀ for a typical mean free time s , at ordinary pressures and temperatures

where 1 } s ’ k
B

T } ò , the only energy non-diagonalities of the density operator that can

survive complete phase randomization will be very small compared to the thermal

energy k
N

T . (The basis for this assessment uses the order of magnitude values of n E
2 3 10 # & m Õ $ and d E 3 3 10 Õ " ! m, v̀ E 7 3 10 # ms Õ " at 300 K for N

#
.) As a consequence,

the non-commutation of u and f ( ! ) can in practice be ignored. Under the same

conditions, the density operator is diagonal in states of diŒerent J magnitude.

The local gas density, stream velocity and mean particle energy © e ª are determined

by the W igner function-density operator according to

n = Tr
int & f(r , p, t) dp, (99)

nmv
!
= Tr

int & pf(r , p, t) dp, (100)

n © e ª = Tr
int & 9 (p – mv

!
) #

2m
1 H

int : f(r , p, t) dp. (101)

Note that for the energy, only the motion relative to the centre of mass is considered

since this is the motion that is associated with Brownian motion. If equilibrium

statistical mechanics is used to interpret the mean particle energy in terms of a

temperature, it is possible in principle to calculate the temperature from this energy

expectation value.
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Relaxation and transport of molecular systems in the gas phase 213

Equations of change for these local expectation values are obtained by taking

appropriate averages of the Boltzmann equation (20) which, since there is a need to

distinguish local and non-local eŒects, is most conveniently expressed in terms of the

W igner function-density operator (compare equation (53) for the matrix represen-

tation of the internal state dependence)

¦ f
"
(r , p)

¦ t
1

p
m

[ ¡ f
"
(r , p) 1

i

ò
[H

int, "
, f

"
(r , p, t)]

Õ
=– 8i(2 p ) $ ò # Tr

# , int & & dq dk

3 [ © q r T r k ª f
"
(r , p 1 q – k, t) f

#
(r , p 1 q 1 k, t) © k r X ‹ r q ª

– © q r X r k ª f
"
(r , p 1 q – k, t) f

#
(r , p 1 q 1 k, t) © k r T ‹ r q ª ]. (102)

This is the rate of change for the W igner function-density operator for molecule 1, and

has been written to retain all oŒ-diagonalities in the internal states while limiting all

dynamical eŒects, in particular the collisions, to being local in space. Thus both

W igner functions in the collision term are evaluated at the same spatial point, and

moreover at the same point in space as that used on the left hand side of the equation.

The momenta k and q can be considered as the relative momenta before and after the

collision. Finally, it should be emphasized that while f(r, p, t) is clearly indicated to be

a function of position, momentum and time, it is also an operator on internal states

thus being indicated by the dual notation of being a W igner function-density operator.

The transition and M ù ller operators also have this dual structure, having their

momentum matrix elements explicitly indicated while their internal state properties

are inherently of operator form. Equation (102) is the localized form of the Boltzmann

equation discussed in [42]. If the W igner function-density operator is diagonal in

internal energy, this reduces to the W ang-Chang± Uhlenbeck equation (54).

Averages of equation (102) are now taken. For the density, this gives the equation

of continuity

¦ n

¦ t
=– ¡ [ (nv

!
), (103)

having no contribution from the collision term since integrating the collision term over

p and the relation T = V X between the transition and M ù ller operators, imply that the

collision term reduces to the trace of a commutator, which naturally vanishes. For the

stream velocity, symmetry of the collision term between the two particles allows p to

be replaced by p 1 q, which is the centre of mass momentum that commutes with the

potential and all collision operators. Thus there is no contribution from the collision

term to the rate of change of momentum density and

¦ nmv
!

¦ t
=– ¡ [ (nmv

!
v

!
1 P ), (104)

where

P 3 Tr
int & (p– mv

!
)(p– mv

!
)

m
f (r, p, t) dp (105)

is the pressure tensor. This second rank tensor has two indices, and while symmetric

in this work, the ® rst index refers to the direction of transport while the second index

describes the direction of the momentum which is being transported, thus P
xy

is the

rate of transport (kg m s Õ " ) (m # s) Õ " in the xW direction, of momentum in the yW direction.

At local equilibrium, the pressure tensor is given by P = nk
B

T U, in terms of the local

pressure P = nk
B

T of the (low density) gas. Here U is the identity tensor, having
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214 R . F. Snider

components U
jl

= d
jl
. Finally, using an argument similar to that for the momentum,

the rate of change of the energy density is unaŒected by collisions so that

¦
¦ t 9 n 0 mv #

!
2

1 © e ª 1 : =– ¡ [ 9 nv
! 0 mv #

!
2

1 © e ª 1 1 P [ v
!
1 qK : . (106)

This has to take into account the time and spatial dependence of the convective energy

density nmv #
!
} 2 and involves the (kinetic) heat ¯ ux vector

qK 3 Tr
int & (p – mv

!
)

m 9 (p – mv
!
) #

2m
1 H

int : f (r, p, t) dp, (107)

which vanishes at equilibrium. These formal equations of change need to be

supplemented by expressions for P and qK in terms of n, v
!
, T and their spatial

derivatives, in order to get a set of closed equations, namely the hydrodynamic

equations, that can be solved for the ¯ uid ’ s motion. Towards that end, ¯ uid dynamics

standardly assumes that the energy density is a property of local equilibrium, so is

determined completely by equilibrium, as is the density and stream velocity. The

Boltzmann equation can be solved, and standardly is solved, with these constraints

imposed on the solution. This implies, in particular, that the equation of change for the

energy can be expressed as an equation for the change in temperature, using the heat

capacity

C
v
3

¦ © e ª
¦ T

=
3

2
k

B
1 C

int
. (108)

On removing the convective energy contribution with the help of the equations of

change for number density and momentum density, the equation of change for the

temperature is

¦ T

¦ t
=– v

!
[ ~ T –

1

nC
v

(P t : ~ v
!
1 qK). (109)

W hile the pressure tensor is symmetric in the dilute gas case, formally the transpose t

occurs. This is important when angular momentum relaxation is important for the

¯ uid ¯ ow.

For a gas close to local equilibrium, the gradients of stream velocity and

temperature are small so these are a good measure of how the gas deviates from

equilibrium. From the point of view of the equations of change, this suggests that the

non-equilibrium part of the pressure tensor P 3 P – nk
B

T U and of the heat ¯ ux be

proportional to these gradients. The governing principle for the nature of the

proportionality constants is the Curie principle (see in particular [45]) namely that they

have the symmetry of the local equilibrium state. This is reasonable, since the

deviation from equilibrium is being treated linearly so that the proportionality

constants are local equilibrium properties. In this presentation it is assumed that a

magnetic ® eld can be present so the local symmetry is C ¢ v
. Another way of expressing

this is to recognize that, except for the magnetic ® eld B , the local equilibrium state is

isotropic, so that the only thing with a direction on which the proportionality

constants can depend is B . For the heat ¯ ux, which is a polar vector (that is, qK is a

vector that is odd to parity (space inversion) while B is a pseudovector, being even to

parity), this implies that qK cannot be dependent only on B , but must be linearly

dependent on the temperature gradient, namely

qK =– k (B ) [ ~ T . (110)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Relaxation and transport of molecular systems in the gas phase 215

k (B ) is the second rank thermal conductivity tensor that depends on B , whose ® rst

index indicates the direction of heat ¯ ow while the second index is the direction of the

applied temperature gradient. If B = 0, then the thermal conductivity is a scalar, k (0) =

k ! U , the usually discussed thermal conductivity. The pressure tensor is second rank

so it has 9 individual components, as does the stream velocity gradient. That means

there are in general 81 proportionality constants (viscosity coe� cients) connecting P

and ¡ v
!
. Any symmetry that organizes the result can be a great simplifying feature. In

the absence of a magnetic ® eld, the local equilibrium symmetry is that of the improper

three-dimensional rotation group O(3). It is useful, and standard to ® rst classify the

components of P and ¡ v
!

according to the irreducible representations of O(3). Thus

P can be written as the linear combination

P = P U 1 e [ P a 1 P ( # ), (111)

where the irreducible parts of P , and the corresponding parts of ¡ v
!
, have the O(3)

group theory associations

Irreducible representation P ¡ v
!

1-dimensional P ¡ [ v
!

3-dimensional P a ¡ 3 v
!

5-dimensional P ( # ) [ ¡ v
!
]( # )

(112)

and are identi ® ed, for the pressure tensor P , as the scalar, antisymmetric (which is

equivalent to a vector) and symmetric traceless parts of the second rank tensor,

speci® cally

P 3
1

3
U : P

Pa 3 –
1

2
e : P

P ( # ) 3
1

2
[ P 1 P t] –

1

3
U [U : P ]. (113)

Similar de ® nitions are appropriate for the stream velocity gradient. e is the Levi± Civita

tensor, see the discussion following equation (86).

In the ® eld independent case, the phenomenological equations relating the

components of P and ¡ v
!

are

P =– g !
V

¡ [ v
!
, (114)

P a =– g !
r
¡ 3 v

!
(115)

P ( # ) =– 2 g ! [ ¡ v
!
]( # ), (116)

de® ning the bulk viscosity g !
V
, the rotational relaxation constant g !

r
and the shear

viscosity g ! . The antisymmetric parts only arise when angular momentum eŒects such

as spin relaxation are of importance. This connection is not discussed here, but see [42,
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216 R . F. Snider

45, 74]. Sine P is symmetric in this review, essentially because the collision term is

treated as local, the neglect of P a is consistent with this limited treatment. On

substituting these phenomenological equations into the equations of change, the three

hydrodynamical equations: (i) the equation of continuity (103) ; (ii) the Navier± Stokes

equation

¦ v
!

¦ t
=– v

!
[ ¡ v

!
–

1

nm
¡ P 1

g !

nm
¡ # v

!
1

g !
V
1 "

$
g !

nm
¡ ¡ [ v

!
; (117)

and (iii) the `heat ’ equation

¦ T

¦ t
=– v

!
[ ¡ T –

1

nC
v

(P ¡ [ v
!
– k ! ¡ # T ) (118)

are obtained. This closed set of equations is the usual starting point for most analyses

of ¯ uid ¯ ow.

For a ® nite magnetic ® eld, the symmetry group is C ¢ v
and the irreducible

representations of O(3) are reduced into those of C ¢ v
. In particular the 5-dimensional

irreducible representation of O(3) reduces completely into ® ve 1-dimensional

irreducible representations of C ¢ v
, which are classi ® ed according to the weight

(eigenvalue) a ; a =– 5, – 4, ¼ , 5 of the in ® nitesimal rotation operator about the ® eld

direction. These correspond exactly with the spherical harmonics Y
#

a (p) if the quantity

being classi ® ed by the group was the second rank tensor [p]( # ). Thus P ( # ) reduces to the

® ve quantities I I ( # , a ). Except for a = 0, there is only one stream velocity gradient

classi ® ed by a , thus the phenomenological equations become, for a 1 0,

P ( # , a ) =– 2 g a [ ¡ v
!
]( # , a ). (119)

For a = 0 there are two components of the stream velocity gradient that are invariant

to a rotation about the symmetry axis, and since these can be coupled, the

phenomenological equations for these components become

P ( # , ! ) =– 2 g
!
[ ¡ v

!
]( # , ! ) 1 (2 } 3) " / # f ¡ [ v

!

P = (2 } 3) " / # f [ ¡ v
!
]( # , ! )– g

v
¡ [ v

!
.

5

6
7

8

(120)

All g
m

as well as f and g
v

are dependent on the magnetic ® eld magnitude B. That the

two cross terms between the shear and bulk viscosities are equal is an example of

Onsager’ s reciprocal relations [45, 75].

Technical note : In this review of the ® eld dependent transport coe� cients the

spherical components of tensors are used on the basis that such quantities are

more familiar to most readers, than are the irreducible Cartesian tensors [76]

which are convenient for connecting to the directions of an experimental set-

up and used in the literature of this subject. In particular, the coupling of

irreducible Cartesian tensors takes some time to properly present, and is not

done here. The consequence for this presentation is that there are a number

of factors such as the (2 } 3) " / # that appear arbitrarily introduced. These are in

fact conversion factors between the spherical and Cartesian forms for the

tensors so that the quantities entering here are consistent with those in the

literature as used in the detailed survey of [60].

The method of solving the Boltzmann equation to obtain the hydrodynamic

equations is known as the Chapman± Enskog method (see in particular the discussion
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Relaxation and transport of molecular systems in the gas phase 217

in [58] or [68] for the reasoning behind this procedure). A simple view is that this

method can be considered as a steady state expansion of the Boltzmann equation up

to terms linear in the gradients, attributing the time dependence of the density operator

to be solely due to the time and spatial dependence of the density, stream velocity and

temperature. Such an expansion requires that the W igner function-density operator be

expanded f = f ( ! ) (1 1 u ) with a local equilibrium leading term and a perturbation

function-operator u that is linear in the gradients. In analogy to the discussion in

section 4, the density operator will be diagonal in those energies that are of size

comparable to k
B

T , so in practice, f ( ! ) and u can be assumed to commute.

The expansion of the Boltzmann equation requires the calculation of the time and

spatial rates of change of the local equilibrium W igner function. Equation (64) does

this for the W ang-Chang± Uhlenbeck equation, and the only generalization needed of

that result, is removing the state label j wherever it occurs and replacing the

eigenvalue e by the internal state hamiltonian H
int

. The remaining time dependences

of n, T and v
!

are removed by using the equations of change (103), (104) and (109),

truncated to being ® rst order in gradients. As a result, the linear in gradients part of

the Boltzmann equation can be written in what will be referred to as the

Chapman± Enskog equation

¦ f ( ! )(r , p)

¦ t
1

p
m

[ ¡ f ( ! )(r , p)= f( ! )(r, p) ( 0 (p – mv
!
) #

2mk
B

T
–

5

2
1

H
int

– © H
int

ª
k

B
T 1 p – mv

!
mk

B
T

[ ¡ ln T

1
1

mk
B

T
[p– mv

!
]( # ) : [ ¡ v

!
]( # ) 1 9 2C

int

3C
v
0 p – mv

!
) #

2mk
B

T
–

3

2 1 –
H

int
– © H

int
ª

C
v
T : ¡ [ v

! *
=– f ( ! )(r , p)( 2 1 i ,

int
) u . (121)

The perturbation enters both through the linearization of the collision superoperator

appearing in equation (102), which is expressed as the linear collision superoperator 2 ,

and the commutator superoperator ,
int

of the internal state hamiltonian. At low

densities, it is only the Zeeman energy diŒerences that are small enough that they are

not fully phase randomized, so the internal state commutator can be simpli ® ed to the

Zeeman commutator ,
Z
, and of course the Zeeman energies are negligible as far as

contributing to the internal energy, so the internal state hamiltonian H
int

can be

replaced everywhere it appears by the rotational hamiltonian H
rot

. At low temperatures

most simple molecules are eŒectively in their ground vibrational state, so vibrational

excitation can usually be ignored.

To simplify the present review, it is assumed in the following that the gas is

isothermal, so that all terms dealing with temperature and energy ¯ uxes are dropped

from further discussion. It is also noticed that the coe� cient of ¡ [ v
!

is the diŒerence

between translational and internal energies weighted with diŒerent factors such that it

is orthogonal to the total energy, see the operator in equation (101). Since it is the

divergence of the stream velocity that is associated with the bulk viscosity, it follows

that the bulk viscosity is associated with the conversion of translational energy to and

from the internal energy.

Since the collision superoperator is rotationally invariant, it follows that the

Chapman± Enskog equations can be reduced according to the local symmetry group of

the gas, in particular according O(3) if there is no magnetic ® eld and according to C ¢ v
in the presence of a magnetic ® eld. It is the latter which is assumed in the following,
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218 R . F. Snider

while the ® eld-free case follows as a special case. The perturbation can thus be

expanded in the C ¢ v
irreducible components of ¡ v

!
, thus

u =– 3
a

(– 1) a B ( # ,Õ a )[ ~ v
!
]( # , a )– B( ! ) ~ [ v

!
, (122)

with tensorial expansion coe� cients B ( # ,Õ a ) and B ( ! ) dependent on the local thermo-

dynamic equilibrium parameters n and T as well as the vector variables p – mv
!
, J

and B . On the basis that the diŒerent components of the stream velocity gradient are

independent, the viscosity part of the Chapman± Enskog equation separates into the

six equations

2[W ]( # , Õ a ) = ( 2 1 i ,
Z
) B ( # , Õ a ) (123)

9 2C
rot

3C
v
0 W # –

3

2 1 – H
rot

– © H
rot

ª
C

v
T : = ( 2 1 i ,

Z
) B( ! ). (124)

Here the dimensionless momentum W 3 (p – mv
!
) } (2mk

B
T) " / # , whose magnitude is

W has been introduced for notational convenience. A ® rst order approximate solution

of these equations is to be obtained by choosing an approximate representation of

B ( # ,Õ a ) and B ( ! ).

The general expansion of B ( # ,Õ a ) and B ( ! ) can be considered. However, for a gas such

as N
#
, comparison of the theoretical predictions with the experimental ® eld and

pressure dependence of the viscosity, shows that a good approximation is obtained by

limiting the expansion to

B( # , Õ a ) = b( # , Õ a )
# !

[W ]( # , Õ a ) 1 b( # , Õ a )
D 9 23 0 W # –

3

2 1 – H
rot

– © H
rot

ª
C

rot
T :

1 b # ,Õ a

! #
[J]( # ,Õ a ) 1 3

b , c

(– 1) b + c b( # , Õ a )
# # , b c [W ]( # , b )[J]( # , c ) (125)

B ( ! ) = b( ! )
D 9 23 0 W # –

3

2 1 – H
rot

– © H
rot

ª
C

rot
T : 1 3

b

(– 1) b b( ! )
# ! , b [W ]( # , Õ b )

1 3
b , c

(– 1) b + c b( ! )
# # , b c [W ]( # , b )[J]( # , c ), (126)

with the b( · )
pq , ¼ as constant coe� cients (for a ® xed n and T ) for the four function-

operators U
pq

. Several aspects of the notation and choice of expansion terms deserve

comments. The notation for the expansion coe� cients b( · )
pq , ¼ is not standard, but

su� cient and descriptive for the present purpose, with p and q denoting the tensorial

orders in W and J, respectively. The two leading terms in each expansion are

independent of the directions of J and have the same form as the u independent parts

of the Chapman ± Enskog equations. They determine the major contribution to the

® eld-free viscosity coe� cients. It is to be noticed that no terms in the expansion

contribute to the local average density, stream velocity or energy density, equations

(99)± (101), a requirement of the Chapman ± Enskog method of solution. The added

terms are J direction dependent and are aŒected by the magnetic ® eld to determine the
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Relaxation and transport of molecular systems in the gas phase 219

® eld dependence of the viscosity coe� cients, namely the Senftleben± Beenakker eŒects

[72]. There is a question as to whether only the angles of J should appear in the

tensorial terms, rather than the whole vector J, since the form listed above gives a very

large weighting to large J magnitudes, but since this does not aŒect the qualitative

picture which is emphasized here, this detail will be ignored. Experimentally it has been

found that the ® eld dependence of the viscosity is small, being typically of the order of

less than 1 %, thus the J dependent terms are expected to be of small magnitude so they

can be treated in a perturbative manner.

The, in general ® eld dependent, transport coe� cients are determined by the scalar

expansion coe� cients b( · )
¼ according to

g a =
1

2
nk

B
Tb( # ,Õ a )

# !
(127)

g
V

=
2

3
nk

B
Tb ( ! )

D
(128)

f =– 0 32 1 " / #
nk

B
Tb ( ! )

# ! , !
=– 0 23 1 " / #

nk
B

Tb( # , ! )
D

. (129)

Matrix elements of the six Chapman± Enskog equations with respect to the

operators in equations (125) using the above form for the perturbation u gives four

equations for each B ( # ,Õ a ) component, namely

n =
1

2
n # © v ª 3 (20)b( # ,Õ a )

# !
1

n # © v ª
(2N

J
) " / #

3 0 20

02 1 b( # ,Õ a )
! #

1
n # © v ª

2(N
J
) " / # 0 35

12 1 " / #
3 0 20

22 1 3
b c
0 2

a

2

b

2

c 1 b( # , Õ a )
# # , b c

0 =
n # © v ª

(2N
J
) " / #

3 0 02

20 1 b( # , Õ a )
# !

1
1

N
J

(n # © v ª 3 (02) 1 in a x
J
) b( # , Õ a )

! #

1
n # © v ª

N
J
(2) " / # 0 35

12 1 " / #
3 0 02

22 1 3
b c
0 2

a

2

b

2

c 1 b( # ,Õ a )
# # , b c

0 =
n # © v ª

2(N
J
) " / # 0 35

12 1 " / #
3 0 22

20 1 0 2

a

2

b

2

c 1 b( # ,Õ a )
# !

1
n # © v ª

(2N
J
) " / # 0 2C

v

3C
rot
1 " / #

3 0 22

D 1 (– 1) b d b , Õ c b( # ,Õ a )
D

1
n # © v ª

N
J
(2) " / # 0 35

12 1 " / #
3 0 22

02 1 0 2

a

2

b

2

c 1 b( # ,Õ a )
! #

1
1

2N
J

(n # © v ª 3 (22)– in c x
J
) b( # ,Õ a )

# # , b c

0 = n # © v ª 0 C
v

3C
rot

N
J
1 " / #

3 0 D

22 1 3
b

(– 1) b b( # ,Õ a )
# # , b ,Õ b 1

2C
v

3C
rot

n # © v ª 3 (D ) b( # ,Õ a )
D

. (130)
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220 R . F. Snider

Here the [J]( # ) normalization factor is (for a diamagnetic diatomic)

1

N
J

= Tr
rot

[J]( # ) : [J]( # ) exp (– H
rot

} k
B

T ) } 5Tr
rot

exp (– H
rot

} k
B

T )

= 3
j

(2j 1 1) j( j 1 1)[4j( j 1 1)– 3] exp (– j( j 1 1) } 2Ik
B

T )

} 30 3
j

(2j 1 1) exp (– j( j 1 1) } 2Ik
B

T ) (131)

while the Zeeman superoperator ,
Z

gives rise to the x
J

terms and the kinetic, that is,

thermally averaged, cross-sections

3 0 jk

j´k´ 1 =
1

n # © v ª
Tr f ( ! ) U

jk
2 U

j´k´ (132)

determine the amount of collisional coupling that occurs between the normalized

versions U
jk

, U
j´k´ of the operators labelled by jk and j´k´. 3 ( jk) is the diagonal version

of this, corresponding to the collisional relaxation of the jk operator. Except for the

`D ’ operator, all operators are components of tensors so that the rotational invariance

of 2 restricts what coupling cross-sections can occur. This has been taken into account

in the above and is responsible for the presence of the 3j-coe� cients

0 2

a

2

b

2

c 1 .

On the basis that all cross-sections’ coupling velocity and angular momenta are small,

the only relaxation cross-section associated with `22 ’ that has been retained is the one

which treats the tensorial nature of the collision as if there is no coupling between the

velocity and angular momenta. This has been labelled as 3 (22). Again, on the basis

that the coupling cross-sections are small, these equations can be solved for b( # , Õ a )
# !

and

b( # , Õ a )
D

to at most second order in the coupling cross-sections. The results of these

solutions determine g a and f according to equations (127), to give

g a =
k

B
T

© v ª 3 (20) 9 1 1
3 ( # !

! #
) #

3 (20) 3 (02)

1

1 1 i a x
J

s
! #

1
35 3 ( # !

! #
) #

12 3 (20) 3 (22)
3
b c
0 2

a

2

b

2

c 1 # 1

1 – i c x
J

s
# #
: (133)

and

f =– 0 35C
rot

6C
v
1 " / # k

B
T 3 (D

# #
) 3 ( # #

# !
)

© v ª 3 (20) 3 (D) 3 (22)
3

b

(– 1) b 0 2

0

2

b

2

– b 1 1

1 1 i b x
J

t
# #

= g !
V 0 3C

v

4C
rot
1 " / # 3 (D

# #
) 3 ( # #

# !
)

3 (20) 3 (22) 9 8 x #
J

s #
# #

1 1 4 x #
J

s #
# #

–
x #

J
s #
# #

1 1 x #
J

s #
# #
: . (134)

Here 1 } s
jk

= n © v ª 3 ( jk) is the relaxation rate for the operator associated with jk. It is

clear that the cross eŒect f vanishes at zero ® eld. The magnitude of f is in agreement

with the original publication [72] while there seems to be a typo in the general review

[60].
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The three equations for the components of B ( ! ) are

n =
C

v

C
rot

n # © v ª 3 (D) b( ! )
D

1 n # © v ª 0 3C
v

4C
rot

N
J
1 " / #

3 0 D

22 1 3
c

(– 1) c b( ! )
# # , Õ c c

0 = n # © v ª 0 C
v

3C
rot

N
J
1 " / #

3 0 22

D 1 (– 1) b d b , Õ c b( ! )
D

1
1

2N
J

(n # © v ª 3 (22)– in c x
J
) b( ! )

# # , b c

1
n # © v ª

2(N
J
) " / #

3 0 22

20 1 0 35

12 1 " / #
3

a

(– 1) a 0 2

– a

2

b

2

c 1 b( ! )
# ! , a

0 =
n #

2
© v ª 3 (20) b( ! )

# ! , a 1
n # © v ª

2(N
J
) " / #

3 0 20

22 1 0 35

12 1 " / #
3
b c

(– 1) b + c 0 2

– a

2

b

2

c 1 b( ! )
# # , b c . (135)

W ith the same type of approximations, these determine f as given above, as well as the

bulk viscosity

g
V

=
2C

rot
k

B
T

3C
v
© v ª 3 (D) 9 1 1 0 1 1

2

1 1 x #
J

s #
# #

1
2

1 1 4 x #
J

s #
# #
1 3 ( # #

D
) #

3 (22) 3 (D) : . (136)

The ® eld dependence of all these viscosity coe� cients arise through combinations

of the form x
J

s
jk

£ B } P . Thus experimentally the various viscosity coe� cients are

appropriately expressed as a function of B } P , the ratio of ® eld to pressure. The ratio

x
J
s is exactly the ratio of the precession frequency to the collision frequency. Thus if

this ratio is large, there are many precessions between each time a molecule collides. As

a consequence, when the molecule does again collide, the angular momentum has been

randomized in direction and this eliminates such terms from contributing to the

momentum transfer, compare the discussion relative to equation (76). At zero ® eld all

shear viscosity coe� cients g a are equal, having a dominant contribution from the [W ]( # )

component of the perturbation function u plus, within the approximations presented

here, small contributions from the [J]( # ) and [W ]( # ) [J]( # )components. As the ® eld

increases, the latter are phase randomized, so their contributions decrease. That is, at

large ® elds the viscosity coe� cients are smaller than at zero ® eld. The bulk viscosity

has the same type of behaviour. It needs to be stated that this is the behaviour for many

molecular systems, but if operators dependent on odd powers of J are important, as

is usual for molecules with permanent dipoles, then the behaviour can be diŒerent.

Paramagnetic molecules such as O
#

have a more complicated behaviour because the

large gyromagnetic ratio of an electron spin means that the precession of the spin can

couple with the rotational angular momentum and signi® cantly in¯ uence the detailed

nature of the ® eld dependence [77, 78].

Inherently the viscosity is the resistance to ¯ ow and depending on the geometry of

the apparatus, diŒerent viscosity coe� cients can, and have, been measured, see [60] for

a comprehensive review. Again, ¯ ow involves the stream velocity, and viscosity has to

do with how the molecular velocity distribution diŒers from a local equilibrium

M axwellian due to a non-uniform stream velocity. Thus the main contribution to the

(shear) viscosity is due to the decay of the directional, in particular the [W ]( # ),

dependence of the velocity distribution function. For neutral molecules, a magnetic

® eld does not aŒect the velocity of a molecule so for the ® eld to in¯ uence the viscosity,

there must be a coupling to the rotational motion of the molecule. Since this can not

occur intramolecularly, it must arise via collisional coupling. It is the presence of the
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222 R . F. Snider

resulting non-equilibrium angular momentum part of the density operator that is

responsible for the ® eld eŒects. This necessarily involves collisional coupling from the

velocity directions to the angular momentum directions and back again, thus the

requirement that the Senftleben± Beenakker eŒects be quadratic in `production ’ cross-

sections. As well, the `relaxation ’ cross-sections that cause the decay of the angular

momentum and velocity non-equilibrium contributions also appear. It is noted in the

above that the coupling between shear and bulk viscosities requires the density

operator to have aspects of non-equilibrium that simultaneously involve the directions

of both velocity and angular momentum, speci® cally in the above presentation, the

operator [W ]( # )[J]( # ). It is only because this operator can have a scalar (rotationally

invariant) component that it allows a coupling to the scalar energy diŒerence operator

that determines the bulk velocity.

6. Discussion

This review has attempted to describe the basic theoretical concepts governing

relaxation and transport of molecular systems in the gas phase with an emphasis on the

role of internal states. Necessarily, the author’ s bias has in¯ uenced what is emphasized

and discussed, as well as space and time constraints. Anything to do with the decay to

equilibrium is naturally associated with an increase in entropy whereas a mechanical

system conserves entropy. This review’ s coverage of this reversibility± irreversibility

paradox thus started with a review of the constancy of the N-molecule entropy for a

N-molecule mechanical system. The approximate evolution for a dilute gaseous

system that leads to irreversibility is governed by the Boltzmann equation. Section 3.1

presented two methods for the `derivation ’ of this equation for molecular (quantum)

systems while section 3.4 showed how the combination of intramolecular and

collisional motion described by the Boltzmann equation implies that the 1-molecule

entropy increases until equilibrium is reached. Section 3.5 commented on the

contrasting natures of the meanings and properties of these two diŒerent entropies.

The Boltzmann equation is simple in concept, namely the description of the time

dependence of the distribution of molecular states caused by collisions and the free

motion of molecules between collisions. But the quantum version has a number of

complex technical aspects that are important for some applications, yet appear to be

irrelevant for other applications. These complexities are associated with the inherent

quantum property of superposition, which is re¯ ected in the fact that the molecular

density operator, expressed as a matrix using an energy parametrized basis, is in

general non-diagonal. These can lead to oscillatory time dependent contributions

associated with the motion of the molecules between collisions. The collisional

treatment of such energy non-diagonal terms requires a careful treatment of all the

diŒering energies that enter into the collision superoperator. This has been reviewed in

section 3.2, both in general and for the special case when the collisions are `on-the-

frequency-shell ’ , a case that is often found in practice. In that case the collision

superoperator reduces to a simple form. Section 3.3 discussed the further simpli-

® cations when the density operator is diagonal in both internal states and momentum,

and its extension to allow position dependence with the assumption that collisions

are spatially local. It was stressed in section 3.4 that the approach to equilibrium

is governed in all cases by a combination of collisional motion which drives diagonal-

in-energy elements of the density operator to a Boltzmann distribution, while the

non-diagonal-in-energy terms are eliminated by a process of phase randomization,

caused by the (free) motion of the molecules between collisions.
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Two applications of the general decay have been presented. Section 4 presented the

theory of spin decay in the presence of a magnetic ® eld when the decay is dominated by

an intramolecular mechanism. Section 5 described the calculation of the set of shear

and bulk viscosities and their cross eŒect in the presence of a magnetic ® eld. These

applications illustrate the two limiting cases discussed in section 3.4, and involve a

combination of the eŒects of precession and collisional motions. While the particular

mechanism for spin relaxation discussed depends on an intramolecular coupling

between the spin and the rotational angular momentum for there to be any relaxation,

the ® eld dependence (Senftleben± Beenakker eŒects) of the viscosities requires an

intermolecular (collisional) coupling between velocity and angular momentum

components of the density operator.

There are many aspects of kinetic theory which have not been touched upon in this

review. The whole area of gas ¯ ow according to particular geometries and conditions

have not been covered. Usually these can be described using the hydrodynamic

equations (103), (117) and (118), supplemented by a set of diŒusion equations when

the gas is a chemical mixture. But when the gas has large spatial inhomogeneities such

as in a shock wave, or the gas is so dilute that the gas is not dominated by collisions

and local equilibrium is not a valid ® rst approximation for the density operator, then

it is necessary to go back to the Boltzmann equation and solve it by alternate methods.

A recent introductory coverage of these topics for a reader interested in applications

is the book by Gombosi [65], while a more rigorous coverage is found in the books by

Cercignani [69, 70]. The molecular treatment of the physical properties of interstellar

gases and the upper atmosphere also require special treatment [79]. M easurements of

the ® eld eŒects at very low density where surface eŒects are important are reviewed in

[60]. If a chemical reaction is very fast, then the velocity distribution of the reactant

may be driven out of equilibrium. This has been a problem with a long history of

interest. Hot atom reactions are a particular case [80].

Another topic that is very closely related to the general properties of the Boltzmann

equation with inclusion of internal states is the absorbtion and emission of radiation

and the pressure broadening of spectral lines. Initial formal connections for simple

cases [81] and model collision kernels [82] have been made. Recently M onchick [83] has

made a detailed comparison of Fano’ s line shape theory [38] with the properties of the

Boltzmann equation. W hile they share the same frequency parametrized transition

superoperator, equation (33), the frequency parameter is the observed frequency in

line shape theory, whereas it was stressed in section 3.2 that the Boltzmann equation

requires this parameter to be the free particle frequency on which 4 acts. A common

approximation ignores this diŒerence for the calculation of line width cross-sections,

which often leads to reasonable agreement with experiment [39, 84]. But an

understanding of the detailed shape of the wings of a spectral line appears to need the

more precise treatment.

Much of the modern discussion of the theory of transport coe� cients is phrased in

terms of time correlation functions [71]. But for gas phase applications, it is well

known that the numerical evaluation of the time correlation function reduces to

solving an integral equation which is equivalent to the corresponding Chapman±

Enskog equation. Such connections have not been discussed here. An advantage of the

Boltzmann equation approach, is that it makes a direct connection to the time

dependence of the gas a whole by which an assessment can be made whether or not the

¯ ow is collisionally dominated and the hydrodynamic equations are valid, or whether

a more general description of the ¯ ow is needed.
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